BMC Medical Genomics | |
ChIP-seq in steatohepatitis and normal liver tissue identifies candidate disease mechanisms related to progression to cancer | |
Claes Wadelius2  Jan Komorowski3  Kurt Zatloukal1  Susanne Bornelöv4  Ola Wallerman5  Madhusudhan Bysani2  | |
[1] Institute of Pathology, Medical University of Graz, Graz, Austria;Science for Life Laboratory, Department of Immunology, Genetics and Pathology, BMC, Uppsala University, PO BOX 815, Uppsala, SE 751 08, Sweden;Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, PL-02-106, Poland;Science for Life Laboratory, Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden;Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala, Sweden | |
关键词: Cancer networks; Steatohepatitis; Tissue samples; ChIP-seq; | |
Others : 1091343 DOI : 10.1186/1755-8794-6-50 |
|
received in 2013-06-25, accepted in 2013-10-31, 发布年份 2013 | |
【 摘 要 】
Background
Steatohepatitis occurs in alcoholic liver disease and may progress to liver cirrhosis and hepatocellular carcinoma. Its molecular pathogenesis is to a large degree unknown. Histone modifications play a key role in transcriptional regulations as marks for silencing and activation of gene expression and as marks for functional elements. Many transcription factors (TFs) are crucial for the control of the genes involved in metabolism, and abnormality in their function may lead to disease.
Methods
We performed ChIP-seq of the histone modifications H3K4me1, H3K4me3 and H3K27ac and a candidate transcription factor (USF1) in liver tissue from patients with steatohepatitis and normal livers and correlated results to mRNA-expression and genotypes.
Results
We found several regions that are differentially enriched for histone modifications between disease and normal tissue, and qRT-PCR results indicated that the expression of the tested genes strongly correlated with differential enrichment of histone modifications but is independent of USF1 enrichment. By gene ontology analysis of differentially modified genes we found many disease associated genes, some of which had previously been implicated in the etiology of steatohepatitis. Importantly, the genes associated to the strongest histone peaks in the patient were over-represented in cancer specific pathways suggesting that the tissue was on a path to develop to cancer, a common complication to the disease. We also found several novel SNPs and GWAS catalogue SNPs that are candidates to be functional and therefore needs further study.
Conclusion
In summary we find that analysis of chromatin features in tissue samples provides insight into disease mechanisms.
【 授权许可】
2013 Bysani et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128171243718.pdf | 1546KB | download | |
Figure 5. | 91KB | Image | download |
Figure 4. | 23KB | Image | download |
Figure 3. | 117KB | Image | download |
Figure 2. | 107KB | Image | download |
52KB | Image | download |
【 图 表 】
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M, Omary MB: From Mallory to Mallory-Denk bodies: what, how and why? Exp Cell Res 2007, 313:2033-2049.
- [2]Cohen JC, Horton JD, Hobbs HH: Human fatty liver disease: old questions and new insights. Science 2011, 332:1519-1523.
- [3]Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L: Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One 2010, 5:e9570.
- [4]Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio L, Boerwinkle E, Cohen JC, Hobbs HH: Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008, 40:1461-1465.
- [5]Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, Gudnason V, Eiriksdottir G, Garcia ME, Launer LJ, Nalls M, Clark JM, Mitchell BD, Shuldiner AR, Butler JL, Tomas M, Hoffmann U, Hwang S-J, Massaro JM, O’Donnell CJ, Sahani DV, Salomaa V, Schadt EE, Schwartz SM, Siscovick DS, Voight BF, Carr JJ, Feitosa MF, Harris TB, Fox CS, et al.: 2011. PLoS Genet 2011, 7:e1001324.
- [6]Guenther MG, Levine SS, Boyer L, Jaenisch R, Young R: A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007, 130:77-88.
- [7]Rada-Iglesias A, Ameur A, Kapranov P, Enroth S, Komorowski J, Gingeras TR, Wadelius C: Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders. Genome Res 2008, 18:380-392.
- [8]Pajukanta P, Lilja HE, Sinsheimer JS, Cantor RM, Lusis AJ, Gentile M, Duan XJ, Soro-Paavonen A, Naukkarinen J, Saarela J, Laakso M, Ehnholm C, Taskinen M-R, Peltonen L: Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet 2004, 36:371-376.
- [9]Meex SJR, van Vliet-Ostaptchouk JV, van der Kallen CJH, van Greevenbroek MMJ, Schalkwijk CG, Feskens EJM, Blaak EE, Wijmenga C, Hofker MH, Stehouwer CD, de Bruin TW: Upstream transcription factor 1 (USF1) in risk of type 2 diabetes: association study in 2000 Dutch Caucasians. Mol Genet Metab 2008, 94:352-355.
- [10]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
- [11]Enroth S, Andersson R, Wadelius C, Komorowski J: SICTIN: Rapid footprinting of massively parallel sequencing data. BioData Min 2010, 3:4. BioMed Central Full Text
- [12]Hubbard TJP, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, et al.: Ensembl 2009. Nucleic Acids Res 2009, 37(Database issue):D690-D697.
- [13]Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012, 6:80-92.
- [14]Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010, 38:e164.
- [15]Lin JM, Collins PJ, Trinklein ND, Fu Y, Xi H, Myers RM, Weng Z: Transcription factor binding and modified histones in human bidirectional promoters. Genome Res 2007, 17:818-827.
- [16]Motallebipour M, Ameur A, Reddy Bysani MS, Patra K, Wallerman O, Mangion J, Barker M, McKernan KJ, Komorowski J, Wadelius C: Differential binding and co-binding pattern of FOXA1 and FOXA3 and their relation to H3K4me3 in HepG2 cells revealed by ChIP-seq. Genome Biol 2009, 10:R129. BioMed Central Full Text
- [17]Huang DW, Sherman BT, Lempicki R: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nat Protoc 2009, 4:44-57.
- [18]Lee L, Wang K, Li G, Xie Z, Wang Y, Xu J, Sun S, Pocalyko D, Bhak J, Kim C, Lee K-H, Jang YJ, Il YY, Yoo H-S, Hwang S: Liverome: a curated database of liver cancer-related gene signatures with self-contained context information. BMC Genomics 2011, 12(Suppl 3):S3. BioMed Central Full Text
- [19]Delpuech O, Trabut J, Carnot F, Feuillard J: Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma. Oncogene 2002, 2926-2937.
- [20]Neo SY, Leow CK, Vega VB, Long PM, Islam AFM, Lai PBS, Liu ET, Ren EC: Identification of discriminators of hepatoma by gene expression profiling using a minimal dataset approach. Hepatology 2004, 39:944-953.
- [21]Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, Cai T, Zhang X, Xiao HS, Qu J, Liu F, Huang QH, Cheng ZH, Li NG, Du JJ, Hu W, Shen KT, Lu G, Fu G, Zhong M, Xu SH, Gu WY, Huang W, Zhao XT, Hu GX, Gu JR, Chen Z, Han ZG: Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci U S A 2001, 98:15089-15094.
- [22]Chen X, Cheung S, So S: Gene expression patterns in human liver cancers. Mol Biol Cell 2002, 13(June):1929-1939.
- [23]Patil MA, Chua M-S, Pan K-H, Lin R, Lih C-J, Cheung S-T, Ho C, Li R, Fan S-T, Cohen SN, Chen X, So S: An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene 2005, 24:3737-3747.
- [24]Zekri A-RN, Hafez MM, Bahnassy A, Hassan ZK, Mansour T, Kamal MM, Khaled HM: Genetic profile of Egyptian hepatocellular-carcinoma associated with hepatitis C virus Genotype 4 by 15 K cDNA microarray: preliminary study. BMC Res Notes 2008, 1:106. BioMed Central Full Text
- [25]Kurokawa Y, Matoba R, Takemasa I, Nagano H, Dono K, Nakamori S, Umeshita K, Sakon M, Ueno N, Oba S, Ishii S, Kato K, Monden M: Molecular-based prediction of early recurrence in hepatocellular carcinoma. J Hepatol 2004, 41:284-291.
- [26]Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinforma 2009, 10:48. BioMed Central Full Text
- [27]Segrè AV, Groop L, Mootha VK, Daly MJ, Altshuler D, Consortium D, investigators M: Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 2010, 6:e1001058.
- [28]Lucey MR, Mathurin P, Morgan TR: Alcoholic hepatitis. N Engl J Med 2009, 360:2758-2769.
- [29]Shastry BS: SNP alleles in human disease and evolution. J Hum Genet 2002, 47:561-566.
- [30]Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM, Habegger L, Rozowsky J, Shi M, Urban AE, Hong M-Y, Karczewski KJ, Huber W, Weissman SM, Gerstein MB, Korbel JO, Snyder M: Variation in transcription factor binding among humans. Science 2010, 328:232-235.
- [31]Ward LD, Kellis M: HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012, 40(Database issue):D930-D934.
- [32]Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub M, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M: Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012, 22:1790-1797.
- [33]Nsengimana J, Samani NJ, Hall AS, Balmforth AJ, Mangino M, Yuldasheva N, Maqbool A, Braund P, Burton P, Bishop DT, Ball SG, Barrett JH: Enhanced linkage of a locus on chromosome 2 to premature coronary artery disease in the absence of hypercholesterolemia. Eur J Hum Genet 2007, 15:313-319.
- [34]Boison D, Scheurer L, Zumsteg V, Rülicke T, Litynski P, Fowler B, Brandner S, Mohler H: Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A 2002, 99:6985-6890.
- [35]Wu CW, Chu ESH, Lam CNY, Cheng aSL, Lee CW, Wong VWS, Sung JJY, Yu J: PPARgamma is essential for protection against nonalcoholic steatohepatitis. Gene Ther 2010, 17:790-798.
- [36]Karlić R, Chung H-R, Lasserre J, Vlahovicek K, Vingron M: Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A 2010, 107:2926-2931.
- [37]Yoneda M, Hotta K, Nozaki Y, Endo H, Uchiyama T, Mawatari H, Iida H, Kato S, Hosono K, Fujita K, Yoneda K, Takahashi H, Kirikoshi H, Kobayashi N, Inamori M, Abe Y, Kubota K, Saito S, Maeyama S, Wada K, Nakajima A: Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD). BMC Gastroenterol 2008, 8:27. BioMed Central Full Text
- [38]Sookoian S, Rosselli MS, Gemma C, Burgueño AL, Fernández Gianotti T, Castaño GO, Pirola CJ: Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor γ coactivator 1α promoter. Hepatology 2010, 52:1992-2000.
- [39]Gyamfi MA, Wan Y-JY: Pathogenesis of alcoholic liver disease: the role of nuclear receptors. Exp Biol Med (Maywood) 2010, 235:547-560.
- [40]Kooner JS, Chambers JC, Aguilar-Salinas C, Hinds D, Hyde CL, Warnes GR, Gómez Pérez FJ, Frazer K, Elliott P, Scott J, Milos PM, Cox DR, Thompson JF: Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 2008, 40:149-151.