期刊论文详细信息
BMC Microbiology
Rapid optical determination of β-lactamase and antibiotic activity
Tayyaba Hasan2  Gerard J Nau1  Xiang Zheng4  Ulysses W Sallum3  Shazia Khan2 
[1] Department of Microbiology and Molecular Genetics, Department of Medicine, Division of Infectious Diseases, Centre for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;Present address: Partners Research Ventures and Licensing, 101 Huntington Ave., 4th Floor, Boston, MA 02199, USA;Present address: Pfizer Inc, 401 N Middletown Rd, Pearl River, NY 10965, USA
关键词: Antibiotic susceptibility;    Antibiotic activity;    β-lactam;    β-lactamase;    Cefazolin;    Cephalosporin;    Staphylococcus;    Quenching;    Fluorophore;    Fluorescence;   
Others  :  1141449
DOI  :  10.1186/1471-2180-14-84
 received in 2013-12-13, accepted in 2014-03-28,  发布年份 2014
PDF
【 摘 要 】

Background

The absence of rapid tests evaluating antibiotic susceptibility results in the empirical prescription of antibiotics. This can lead to treatment failures due to escalating antibiotic resistance, and also furthers the emergence of drug-resistant bacteria. This study reports a rapid optical method to detect β-lactamase and thereby assess activity of β-lactam antibiotics, which could provide an approach for targeted prescription of antibiotics. The methodology is centred on a fluorescence quenching based probe (β-LEAF – β-Lactamase Enzyme Activated Fluorophore) that mimics the structure of β-lactam antibiotics.

Results

The β-LEAF assay was performed for rapid determination of β-lactamase production and activity of β-lactam antibiotic (cefazolin) on a panel of Staphylococcus aureus ATCC strains and clinical isolates. Four of the clinical isolates were determined to be lactamase producers, with the capacity to inactivate cefazolin, out of the twenty-five isolates tested. These results were compared against gold standard methods, nitrocefin disk test for β-lactamase detection and disk diffusion for antibiotic susceptibility, showing results to be largely consistent. Furthermore, in the sub-set of β-lactamase producers, it was demonstrated and validated that multiple antibiotics (cefazolin, cefoxitin, cefepime) could be assessed simultaneously to predict the antibiotic that would be most active for a given bacterial isolate.

Conclusions

The study establishes the rapid β-LEAF assay for β-lactamase detection and prediction of antibiotic activity using S. aureus clinical isolates. Although the focus in the current study is β-lactamase-based resistance, the overall approach represents a broad diagnostic platform. In the long-term, these studies form the basis for the development of assays utilizing a broader variety of targets, pathogens and drugs.

【 授权许可】

   
2014 Khan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327051240673.pdf 868KB PDF download
Figure 3. 66KB Image download
Figure 2. 44KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kollef MH, Fraser VJ: Antibiotic resistance in the intensive care unit. Ann Intern Med 2001, 134(4):298-314.
  • [2]Rello J: Importance of appropriate initial antibiotic therapy and de-escalation in the treatment of nosocomial pneumonia. Eur Respir Rev 2007, 103:33-39.
  • [3]Cosgrove SE: The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 2006, 42(Suppl 2):S82-S89.
  • [4]Levy SB: The antibiotic paradox: How the misuse of antibiotics destroys their curative powers. 2nd edition. Cambridge, MA: Perseus Publishing; 2002.
  • [5]Levy SB: Microbial resistance to antibiotics: An evolving and persistent problem. Lancet 1982, 2(8289):83-88.
  • [6]Cristino JM: Correlation between consumption of antimicrobials in humans and development of resistance in bacteria. Int J Antimicrob Agents 1999, 12(3):199-202.
  • [7]Deasy J: Antibiotic resistance: the ongoing challenge for effective drug therapy. JAAPA 2009, 22(3):18-22.
  • [8]Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J: Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of america. Clin Infect Dis 2009, 48(1):1-12.
  • [9]Jenkins SG, Schuetz AN: Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin Proc 2012, 87(3):290-308.
  • [10]Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O: Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013, 13(12):1057-1098.
  • [11]DeBellis RJ, Zdanawicz M: Bacteria Battle Back: Addressing Antibiotic Resistance. Boston, MA: Massachusetts College of Pharmacy and Health Science; November 2000. http://www.tufts.edu/med/apua/research/completed_projects_5_1888322820.pdf webcite.
  • [12]de Lencastre H, Sa Figueiredo AM, Urban C, Rahal J, Tomasz A: Multiple mechanisms of methicillin resistance and improved methods for detection in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 1991, 35(4):632-639.
  • [13]Le Thomas I, Couetdic G, Clermont O, Brahimi N, Plesiat P, Bingen E: In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy. J Antimicrob Chemother 2001, 48(4):553-555.
  • [14]Ghuysen JM: Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol 1991, 45:37-67.
  • [15]Dyke KGH, Gregory PD: Resistance to beta-lactam antibiotics: resistance mediated by beta-lactamase. In The Staphylococci in Human Disease. 1st edition. Edited by Crossley KB, Archer GL. Churchill Livingstone; 1996:136-157.
  • [16]Bush K, Jacoby GA, Medeiros AA: A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995, 39(6):1211-1233.
  • [17]Livermore DM: Beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995, 8(4):557-584.
  • [18]Rice LB: Mechanisms of resistance and clinical relevance of resistance to beta-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc 2012, 87(2):198-208.
  • [19]Rice LB: Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 2008, 197(8):1079-1081.
  • [20]Fowler VG Jr, Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, Corey GR, Spelman D, Bradley SF, Barsic B, Pappas PA, Anstrom KJ, Wray D, Fortes CQ, Anguera I, Athan E, Jones P, van der Meer JT, Elliott TS, Levine DP, Bayer AS, Investigators ICE: Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 2005, 293(24):3012-3021.
  • [21]Miro JM, Anguera I, Cabell CH, Chen AY, Stafford JA, Corey GR, Olaison L, Eykyn S, Hoen B, Abrutyn E, Raoult D, Bayer A, Fowler VG Jr, International Collaboration on Endocarditis Merged Database Study G: Staphylococcus aureus native valve infective endocarditis: report of 566 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis 2005, 41(4):507-514.
  • [22]Dyke KG: Penicillinase production and intrinsic resistance to penicillins in methicillin-resistant cultures of Staphylococcus aureus. J Med Microbiol 1969, 2(3):261-278.
  • [23]Kayser FH: Methicillin-resistant staphylococci 1965–75. Lancet 1975, 2(7936):650-653.
  • [24]Lacey RW, Stokes A: Studies on recently isolated cultures of methicillin-resistant Staphylococcus aureus. J Gen Microbiol 1979, 114(2):329-339.
  • [25]Rosdahl VT, Westh H, Jensen K: Antibiotic susceptibility and phage-type pattern of Staphylococcus aureus strains isolated from patients in general practice compared to strains from hospitalized patients. Scand J Infect Dis 1990, 22(3):315-320.
  • [26]Hartman BJ, Tomasz A: Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 1984, 158(2):513-516.
  • [27]Hayes MV, Curits NAC, Wyke AW, Ward JB: Decreased affinity of a penicillin-binding protein for β-lactam antibiotics in a clinical isolate of Staphylococcus aureus resistant to methicillin. FEMS Microbiol Lett 1981, 10(2):119-122.
  • [28]Rossi L, Tonin E, Cheng YR, Fontana R: Regulation of penicillin-binding protein activity: description of a methicillin-inducible penicillin-binding protein in Staphylococcus aureus. Antimicrob Agents Chemother 1985, 27(5):828-831.
  • [29]McDougal LK, Thornsberry C: The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol 1986, 23(5):832-839.
  • [30]Rosdahl VT: Penicillinase production in Staphylococcus aureus strains of clinical importance. Dan Med Bull 1986, 33(4):175-184.
  • [31]Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Bolger AF, Levison ME, Ferrieri P, Gerber MA, Tani LY, Gewitz MH, Tong DC, Steckelberg JM, Baltimore RS, Shulman ST, Burns JC, Falace DA, Newburger JW, Pallasch TJ, Takahashi M, Taubert KA, Kawasaki D, Committee on Rheumatic Fever E: Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation 2005, 111(23):e394-e434.
  • [32]Wilson WR, Karchmer AW, Dajani AS, Taubert KA, Bayer A, Kaye D, Bisno AL, Ferrieri P, Shulman ST, Durack DT: Antibiotic treatment of adults with infective endocarditis due to streptococci, enterococci, staphylococci, and HACEK microorganisms. JAMA 1995, 274(21):1706-1713.
  • [33]Nannini EC, Stryjewski ME, Singh KV, Bourgogne A, Rude TH, Corey GR, Fowler VG Jr, Murray BE: Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: frequency and possible cause of cefazolin treatment failure. Antimicrob Agents Chemother 2009, 53(8):3437-3441.
  • [34]Laverdiere M, Welter D, Sabath LD: Use of a heavy inoculum in the in vitro evaluation of the anti-staphylococcal activity of 19 cephalosporins. Antimicrob Agents Chemother 1978, 13(4):669-675.
  • [35]Brook I: Inoculum effect. Rev Infect Dis 1989, 11(3):361-368.
  • [36]Nannini EC, Stryjewski ME, Singh KV, Rude TH, Corey GR, Fowler VG Jr, Murray BE: Determination of an inoculum effect with various cephalosporins among clinical isolates of methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 2010, 54(5):2206-2208.
  • [37]Bryant RE, Alford RH: Unsuccessful treatment of staphylococcal endocarditis with cefazolin. JAMA 1977, 237(6):569-570.
  • [38]Fernandez-Guerrero ML, de Gorgolas M: Cefazolin therapy for Staphylococcus aureus bacteremia. Clin Infect Dis 2005, 41(1):127.
  • [39]Nannini EC, Singh KV, Murray BE: Relapse of type A beta-lactamase-producing Staphylococcus aureus native valve endocarditis during cefazolin therapy: revisiting the issue. Clin Infect Dis 2003, 37(9):1194-1198.
  • [40]Quinn EL, Pohlod D, Madhavan T, Burch K, Fisher E, Cox F: Clinical experiences with cefazolin and other cephalosporins in bacterial endocarditis. J Infect Dis 1973, 128(Suppl):S386-S389.
  • [41]CLSI: Performance standards for antimicrobial susceptibility testing; Twenty-second informational supplement; CLSI document M100-S22. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute; 2012.
  • [42]CLSI: Performance standards for antimicrobial disk susceptibility tests; approved standard - eleventh edition. CLSI document M02-A11. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute; 2012.
  • [43]Brown DF, Brown L: Evaluation of the E test, a novel method of quantifying antimicrobial activity. J Antimicrob Chemother 1991, 27(2):185-190.
  • [44]Thomson KS: Extended-spectrum-beta-lactamase, AmpC, and Carbapenemase issues. J Clin Microbiol 2010, 48(4):1019-1025.
  • [45]Thomson KS: Detection of gram-negative beta-lactamase producing pathogens in the clinical lab. Curr Pharm Des 2013, 19(2):250-256.
  • [46]Katsanis GP, Spargo J, Ferraro MJ, Sutton L, Jacoby GA: Detection of Klebsiella pneumoniae and Escherichia coli strains producing extended-spectrum beta-lactamases. J Clin Microbiol 1994, 32(3):691-696.
  • [47]Roth AL, Thomson KS, Lister PD, Hanson ND: Production of KPC-2 alone does not always result in beta-lactam MICs representing resistance in gram-negative pathogens. J Clin Microbiol 2012, 50(12):4183-4184.
  • [48]CLSI: Performance standards for antimicrobial susceptibility testing; Twenty-first informational supplement; CLSI document M100-S21. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute; 2011.
  • [49]Zheng X, Sallum UW, Verma S, Athar H, Evans CL, Hasan T: Exploiting a Bacterial Drug‒Resistance Mechanism: A Light‒Activated Construct for the Destruction of MRSA. Angew Chem Int Ed Engl 2009, 121(12):2182-2185.
  • [50]Sallum UW, Zheng X, Verma S, Hasan T: Rapid functional definition of extended spectrum beta-lactamase activity in bacterial cultures via competitive inhibition of fluorescent substrate cleavage. Photochem Photobiol 2010, 86(6):1267-1271.
  • [51]Zlokarnik G, Negulescu PA, Knapp TE, Mere L, Burres N, Feng L, Whitney M, Roemer K, Tsien RY: Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 1998, 279(5347):84-88.
  • [52]Raz E, Zlokarnik G, Tsien RY, Driever W: beta-lactamase as a marker for gene expression in live zebrafish embryos. Dev Biol 1998, 203(2):290-294.
  • [53]Gao W, Xing B, Tsien RY, Rao J: Novel fluorogenic substrates for imaging beta-lactamase gene expression. J Am Chem Soc 2003, 125(37):11146-11147.
  • [54]Xing B, Khanamiryan A, Rao J: Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. J Am Chem Soc 2005, 127(12):4158-4159.
  • [55]Gill VJ, Manning CB, Ingalls CM: Correlation of penicillin minimum inhibitory concentrations and penicillin zone edge appearance with staphylococcal beta-lactamase production. J Clin Microbiol 1981, 14(4):437-440.
  • [56]Okamoto MP, Nakahiro RK, Chin A, Bedikian A, Gill MA: Cefepime: a new fourth-generation cephalosporin. Am J Hosp Pharm 1994, 51(4):463-477. quiz 541–462
  • [57]Angelescu M, Apostol A: [Cefepime (maxipime), large spectrum 4th generation cephalosporin, resistant to beta-lactamases]. Chirurgia 2001, 96(6):547-552.
  • [58]Fung HB, Chang JY, Kuczynski S: A practical guide to the treatment of complicated skin and soft tissue infections. Drugs 2003, 63(14):1459-1480.
  • [59]Cox VC, Zed PJ: Once-daily cefazolin and probenecid for skin and soft tissue infections. Ann Pharmacother 2004, 38(3):458-463.
  • [60]Flayhart D, Hindler JF, Bruckner DA, Hall G, Shrestha RK, Vogel SA, Richter SS, Howard W, Walther R, Carroll KC: Multicenter evaluation of BBL CHROMagar MRSA medium for direct detection of methicillin-resistant Staphylococcus aureus from surveillance cultures of the anterior nares. J Clin Microbiol 2005, 43(11):5536-5540.
  • [61]Skov R, Smyth R, Clausen M, Larsen AR, Frimodt-Moller N, Olsson-Liljequist B, Kahlmeter G: Evaluation of a cefoxitin 30 microg disc on Iso-Sensitest agar for detection of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2003, 52(2):204-207.
  • [62]Swenson JM, Tenover FC, Cefoxitin Disk Study G: Results of disk diffusion testing with cefoxitin correlate with presence of mecA in Staphylococcus spp. J Clin Microbiol 2005, 43(8):3818-3823.
  • [63]Velasco D, del Mar TM, Cartelle M, Beceiro A, Perez A, Molina F, Moure R, Villanueva R, Bou G: Evaluation of different methods for detecting methicillin (oxacillin) resistance in Staphylococcus aureus. J Antimicrob Chemother 2005, 55(3):379-382.
  • [64]Skov R, Smyth R, Larsen AR, Bolmstrom A, Karlsson A, Mills K, Frimodt-Moller N, Kahlmeter G: Phenotypic detection of methicillin resistance in Staphylococcus aureus by disk diffusion testing and Etest on Mueller-Hinton agar. J Clin Microbiol 2006, 44(12):4395-4399.
  • [65]Davey PG, Barza M: The inoculum effect with gram-negative bacteria in vitro and in vivo. J Antimicrob Chemother 1987, 20(5):639-644.
  • [66]Soriano F, Ponte C: Implications of the inoculum effect. Rev Infect Dis 1990, 12(2):369.
  • [67]Soriano F, Ponte C, Santamaria M, Jimenez-Arriero M: Relevance of the inoculum effect of antibiotics in the outcome of experimental infections caused by Escherichia coli. J Antimicrob Chemother 1990, 25(4):621-627.
  • [68]Konig C, Simmen HP, Blaser J: Bacterial concentrations in pus and infected peritoneal fluid–implications for bactericidal activity of antibiotics. J Antimicrob Chemother 1998, 42(2):227-232.
  • [69]Martineau F, Picard FJ, Grenier L, Roy PH, Ouellette M, Bergeron MG: Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery: The ESPRIT Trial. J Antimicrob Chemother 2000, 46(4):527-534.
  • [70]Strommenger B, Kettlitz C, Werner G, Witte W: Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol 2003, 41(9):4089-4094.
  • [71]Malhotra-Kumar S, Lammens C, Piessens J, Goossens H: Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob Agents Chemother 2005, 49(11):4798-4800.
  • [72]Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD: Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010, 363(11):1005-1015.
  • [73]Chen Y, Succi J, Tenover FC, Koehler TM: Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J Bacteriol 2003, 185(3):823-830.
  • [74]Hamblin MR, Hasan T: Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 2004, 3(5):436-450.
  • [75]Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G: Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 2006, 38(5):468-481.
  文献评价指标  
  下载次数:23次 浏览次数:17次