期刊论文详细信息
BMC Systems Biology
Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes
Jin Wang1  Junfeng Zhang1  Kunming Cao1  Jialin Liu1  Zuguang Gu1 
[1] The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, China
关键词: Gene expression data;    Centrality;    Biological network;    Pathway enrichment;   
Others  :  1144346
DOI  :  10.1186/1752-0509-6-56
 received in 2012-01-31, accepted in 2012-05-24,  发布年份 2012
PDF
【 摘 要 】

Background

Biological pathways are important for understanding biological mechanisms. Thus, finding important pathways that underlie biological problems helps researchers to focus on the most relevant sets of genes. Pathways resemble networks with complicated structures, but most of the existing pathway enrichment tools ignore topological information embedded within pathways, which limits their applicability.

Results

A systematic and extensible pathway enrichment method in which nodes are weighted by network centrality was proposed. We demonstrate how choice of pathway structure and centrality measurement, as well as the presence of key genes, affects pathway significance. We emphasize two improvements of our method over current methods. First, allowing for the diversity of genes’ characters and the difficulty of covering gene importance from all aspects, we set centrality as an optional parameter in the model. Second, nodes rather than genes form the basic unit of pathways, such that one node can be composed of several genes and one gene may reside in different nodes. By comparing our methodology to the original enrichment method using both simulation data and real-world data, we demonstrate the efficacy of our method in finding new pathways from biological perspective.

Conclusions

Our method can benefit the systematic analysis of biological pathways and help to extract more meaningful information from gene expression data. The algorithm has been implemented as an R package CePa, and also a web-based version of CePa is provided.

【 授权许可】

   
2012 Gu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330120405224.pdf 956KB PDF download
Figure 6. 60KB Image download
Figure 5. 56KB Image download
Figure 4. 60KB Image download
Figure 3. 49KB Image download
Figure 4. 91KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 4.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kitano H: Systems biology: a brief overview. Science 2002, 295:1662-1664.
  • [2]Allison DB, Cui X, Page GP, Sabripour M: Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006, 7:55-65.
  • [3]Cary MP, Bader GD, Sander C: Pathway information for systems biology. FEBS lett 2005, 579:1815-1820.
  • [4]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  • [5]Khatri P, Drăghici S: Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 2005, 21:3587-3595.
  • [6]Ackermann M, Strimmer K: A general modular framework for gene set enrichment analysis. BMC bioinformatics 2009, 10:47. BioMed Central Full Text
  • [7]Rivals I, Personnaz L, Taing L, Potier MC: Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 2007, 23:401-407.
  • [8]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  • [9]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23:257-258.
  • [10]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102:15545-15550.
  • [11]Song S, Black MA: Microarray-based gene set analysis: a comparison of current methods. BMC Bioinformatics 2008, 9:502. BioMed Central Full Text
  • [12]Hummel M, Meister R, Mansmann U: GlobalANCOVA: exploration and assessment of gene group effects. Bioinformatics 2008, 24:78-85.
  • [13]Choi Y, Kendziorski C: Statistical methods for gene set co-expression analysis. Bioinformatics 2009, 25:2780-2786.
  • [14]Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, Smyth GK: ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 2010, 26:2176-2182.
  • [15]Geistlinger L, Csaba G, Küffner R, Mulder N, Zimmer R: From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics 2011, 27:i366-i373.
  • [16]Naeem H, Zimmer R, Tavakkolkhah P, Küffner R: Rigorous assessment of gene set enrichment tests. Bioinformatics 2012, 28:1408-1406.
  • [17]Goeman JJ, Bühlmann P: Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 2007, 23:980-987.
  • [18]Gatti DM, Barry WT, Nobel AB, Rusyn I, Wright FA: Heading down the wrong pathway: on the influence of correlation within gene sets. BMC Genomics 2010, 11:574. BioMed Central Full Text
  • [19]Sohn I, Owzar K, Lim J, George SL, Mackey Cushman S, Jung SH: Multiple testing for gene sets from microarray experiments. BMC Bioinformatics 2011, 12:209. BioMed Central Full Text
  • [20]Newton MA, He Q, Kendziorski C: A Model-Based Analysis to Infer the Functional Content of a Gene List. Stat Appl Genet Mol Biol 2012, 11:.
  • [21]Jiang Z, Gentleman R: Extensions to gene set enrichment. Bioinformatics. 2007, 23:306-313.
  • [22]Liu M, Liberzon A, Kong SW, Lai WR, Park PJ, Kohane IS, Kasif S: Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genet 2007, 3:e96.
  • [23]Creighton CJ, Nagaraja AK, Hanash SM, Matzuk MM, Gunaratne PH: A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA 2008, 14:2290-2296.
  • [24]Cheng C, Li LM: Inferring microRNA activities by combining gene expression with microRNA target prediction. PloS One 2008, 3:e1989.
  • [25]Gao S, Wang X: TAPPA: topological analysis of pathway phenotype association. Bioinformatics 2007, 23:3100-3102.
  • [26]Hung JH, Whitfield TW, Yang TH, Hu Z, Weng Z, DeLisi C: Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biol 2010, 11:R23. BioMed Central Full Text
  • [27]Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R: A systems biology approach for pathway level analysis. Genome Res 2007, 17:1537-1545.
  • [28]Thomas R, Gohlke JM, Stopper GF, Parham FM, Portier CJ: Choosing the right path: enhancement of biologically relevant sets of genes or proteins using pathway structure. Genome Biol 2009, 10:R44. BioMed Central Full Text
  • [29]Efron B, Tibshirani R: On testing the significance of sets of genes. The Annals of Applied Statistics 2007, 1:107-129.
  • [30]Fell DA, Wagner A: The small world of metabolism. Nat Biotechnol 2000, 18:1121-1122.
  • [31]Jeong H, Mason SP, Barabási AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411:41-42.
  • [32]Junker BH, Koschützki D, Schreiber F: Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 2006, 7:219. BioMed Central Full Text
  • [33]Scardoni G, Petterlini M, Laudanna C: Analyzing biological network parameters with CentiScaPe. Bioinformatics 2009, 25:2857-2859.
  • [34]Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH: PID: the Pathway Interaction Database. Nucleic Acids Res 2009, 37:D674-D679.
  • [35]Joy MP, Brock A, Ingber DE, Huang S: High-betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol 2005, 2005:96-103.
  • [36]Koschützki D, Schreiber F: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul Syst Bio 2008, 2:193-201.
  • [37]Erdös P, Rényi A: On random graphs. Publ Math Debrecen 1959, 6:290-297.
  • [38]Barabási A: Emergence of Scaling in Random Networks. Science 1999, 286:509-512.
  • [39]Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, Sham PC, Lam BY, Ferguson MD, Tokiwa G, Smith R, Leeson B, Beard R, Lamb JR, Lim L, Mao M, Dai H, Luk JM: microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol 2010, 6:402.
  • [40]Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995, 57:289.
  • [41]Pellegrino R, Calvisi DF, Ladu S, Ehemann V, Staniscia T, Evert M, Dombrowski F, Schirmacher P, Longerich T: Oncogenic and tumor suppressive roles of polo-like kinases in human hepatocellular carcinoma. Hepatology 2010, 51:857-868.
  • [42]Whittaker S, Marais R, Zhu AX: The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010, 29:4989-5005.
  • [43]Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001, 22:153-183.
  • [44]Liu P, Kimmoun E, Legrand A, Sauvanet A, Degott C, Lardeux B, Bernuau D: Activation of NF-kappaB, AP-1 and STAT transcription factors is a frequent and early event in human hepatocellular carcinomas. J Hepatol 2002, 37:63-71.
  • [45]Ribatti D, Marzullo A, Gentile A, Longo V, Nico B, Vacca A, Dammacco F: Erythropoietin/erythropoietin-receptor system is involved in angiogenesis in human hepatocellular carcinoma. Histopathology 2007, 50:591-596.
  • [46]van Dam H, Castellazzi M: Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20:2453-2464.
  • [47]Meng Q, Xia Y: c-Jun, at the crossroad of the signaling network. Protein Cell 2011, 2:889-898.
  • [48]Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L: VEGF-receptor signal transduction. Trends Biochem Sci 2003, 28:488-494.
  • [49]Demir E, Cary MP, Paley S, et al.: The BioPAX community standard for pathway data sharing. Nat Biotechnol 2010, 28:935-942.
  • [50]Seal RL, Gordon SM, Lush MJ, Wright MW, Bruford EA: genenames.org: the HGNC resources in 2011. Nucleic Acids Res 2011, 39:D514-D519.
  • [51]Consortium UniProt: The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 2010, 38:D142-D148.
  • [52]Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ: Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci USA 2005, 102:13544-13549.
  • [53]Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34:267-273.
  • [54]Csardi G, Nepusz T: The igraph software package for complex network research. InterJournal Complex Systems 2006, 1695:.
  • [55]Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD: Cytoscape Web: an interactive web-based network browser. Bioinformatics 2010, 26:2347-2348.
  文献评价指标  
  下载次数:44次 浏览次数:50次