期刊论文详细信息
BMC Cancer
Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells
Elizabeth A Musgrove1  Robert L Sutherland2  C Marcelo Sergio2  Jian Kang2 
[1]Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
[2]The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, 370 Victoria Street, Darlinghurst, Sydney, NSW, Australia
关键词: Breast cancer;    Synthetic lethality;    Cyclin-dependent kinase;    MYC;   
Others  :  859124
DOI  :  10.1186/1471-2407-14-32
 received in 2013-05-18, accepted in 2014-01-08,  发布年份 2014
PDF
【 摘 要 】

Background

Although MYC is an attractive therapeutic target for breast cancer treatment, it has proven challenging to inhibit MYC directly, and clinically effective pharmaceutical agents targeting MYC are not yet available. An alternative approach is to identify genes that are synthetically lethal in MYC-dependent cancer. Recent studies have identified several cell cycle kinases as MYC synthetic-lethal genes. We therefore investigated the therapeutic potential of specific cyclin-dependent kinase (CDK) inhibition in MYC-driven breast cancer.

Methods

Using small interfering RNA (siRNA), MYC expression was depleted in 26 human breast cancer cell lines and cell proliferation evaluated by BrdU incorporation. MYC-dependent and MYC-independent cell lines were classified based on their sensitivity to siRNA-mediated MYC knockdown. We then inhibited CDKs including CDK4/6, CDK2 and CDK1 individually using either RNAi or small molecule inhibitors, and compared sensitivity to CDK inhibition with MYC dependence in breast cancer cells.

Results

Breast cancer cells displayed a wide range of sensitivity to siRNA-mediated MYC knockdown. The sensitivity was correlated with MYC protein expression and MYC phosphorylation level. Sensitivity to siRNA-mediated MYC knockdown did not parallel sensitivity to the CDK4/6 inhibitor PD0332991; instead MYC-independent cell lines were generally sensitive to PD0332991. Cell cycle arrest induced by MYC knockdown was accompanied by a decrease in CDK2 activity, but inactivation of CDK2 did not selectively affect the viability of MYC-dependent breast cancer cells. In contrast, CDK1 inactivation significantly induced apoptosis and reduced viability of MYC-dependent cells but not MYC- independent cells. This selective induction of apoptosis by CDK1 inhibitors was associated with up-regulation of the pro-apoptotic molecule BIM and was p53-independent.

Conclusions

Overall, these results suggest that further investigation of CDK1 inhibition as a potential therapy for MYC-dependent breast cancer is warranted.

【 授权许可】

   
2014 Kang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724080219685.pdf 1905KB PDF download
98KB Image download
114KB Image download
133KB Image download
185KB Image download
98KB Image download
110KB Image download
【 图 表 】

【 参考文献 】
  • [1]Xu J, Chen Y, Olopade OI: MYC and breast cancer. Genes Cancer 2010, 1(6):629-640.
  • [2]Liao DJ, Dickson RB: c-Myc in breast cancer. Endocr Relat Cancer 2000, 7(3):143-164.
  • [3]Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS: A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 2010, 10(1):59-64.
  • [4]Chrzan P, Skokowski J, Karmolinski A, Pawelczyk T: Amplification of c-myc gene and overexpression of c-Myc protein in breast cancer and adjacent non-neoplastic tissue. Clin Biochem 2001, 34(7):557-562.
  • [5]Naidu R, Wahab NA, Yadav M, Kutty MK: Protein expression and molecular analysis of c-myc gene in primary breast carcinomas using immunohistochemistry and differential polymerase chain reaction. Int J Mol Med 2002, 9(2):189-196.
  • [6]Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA: Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012, 151(1):56-67.
  • [7]Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D: c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012, 151(1):68-79.
  • [8]van Riggelen J, Yetil A, Felsher DW: MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010, 10(4):301-309.
  • [9]Malumbres M: Physiological relevance of cell cycle kinases. Physiol Rev 2011, 91(3):973-1007.
  • [10]Carroll JS, Swarbrick A, Musgrove EA, Sutherland RL: Mechanisms of growth arrest by c-myc antisense oligonucleotides in MCF-7 breast cancer cells: Implications for the antiproliferative effects of antiestrogens. Cancer Res 2002, 62(11):3126-3131.
  • [11]Prall OW, Rogan EM, Musgrove EA, Watts CK, Sutherland RL: c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell Biol 1998, 18(8):4499-4508.
  • [12]Mukherjee S, Conrad SE: C-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells. J Biol Chem 2005, 280(18):17617-17625.
  • [13]Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F, Tyner AL: Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci USA 2001, 98(8):4510-4515.
  • [14]Galaktionov K, Chen X, Beach D: Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 1996, 382(6591):511-517.
  • [15]de Marval PL M, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG, Conti CJ, Rodriguez-Puebla ML: Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol 2004, 24(17):7538-7547.
  • [16]Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O'Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW: Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A 2000, 97(5):2229-2234.
  • [17]Dang CV: MYC on the path to cancer. Cell 2012, 149(1):22-35.
  • [18]Vita M, Henriksson M: The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 2006, 16(4):318-330.
  • [19]Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, Frazier J, Chau BN, Loboda A, Linsley PS, Cleary MA, Park JR, Grandori C: Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci U S A 2012, 109(24):9545-9550.
  • [20]Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, Rao M, Yu P, Dominguez-Vidana R, Liang AC, Solimini NL, Bernardi RJ, Yu B, Hsu T, Golding I, Luo J, Osborne CK, Creighton CJ, Hilsenbeck SG, Schiff R, Shaw CA, Elledge SJ, Westbrook TF: A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 2012, 335(6066):348-353.
  • [21]Molenaar JJ, Ebus ME, Geerts D, Koster J, Lamers F, Valentijn LJ, Westerhout EM, Versteeg R, Caron HN: Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci USA 2009, 106(31):12968-12973.
  • [22]Goga A, Yang D, Tward AD, Morgan DO, Bishop JM: Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med 2007, 13(7):820-827.
  • [23]Yang D, Liu H, Goga A, Kim S, Yuneva M, Bishop JM: Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci U S A 2010, 107(31):13836-13841.
  • [24]Cappellen D, Schlange T, Bauer M, Maurer F, Hynes NE: Novel c-MYC target genes mediate differential effects on cell proliferation and migration. EMBO Rep 2007, 8(1):70-76.
  • [25]Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009, 9(3):153-166.
  • [26]Stone A, Sutherland RL, Musgrove EA: Inhibitors of cell cycle kinases: recent advances and future prospects as cancer therapeutics. Crit Rev Oncog 2012, 17(2):175-198.
  • [27]Musgrove EA, Sergio CM, Loi S, Inman CK, Anderson LR, Alles MC, Pinese M, Caldon CE, Schütte J, Gardiner-Garden M, Ormandy CJ, McArthur G, Butt AJ, Sutherland RL: Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS One 2008, 3(8):e2987.
  • [28]Gustafson WC, Weiss WA: Myc proteins as therapeutic targets. Oncogene 2010, 29(9):1249-1259.
  • [29]Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006, 10(6):515-527.
  • [30]Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF, Minna JD, Pollack JR: Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 2009, 4(7):e6146.
  • [31]Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, Knudsen ES: Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle 2012, 11(14):2756-2761.
  • [32]Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ: PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 2009, 11(5):R77. BioMed Central Full Text
  • [33]Gu Y, Rosenblatt J, Morgan DO: Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J 1992, 11(11):3995-4005.
  • [34]Sachdeva UM, O'Brien JM: Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J Clin Invest 2012, 122(2):425-434.
  • [35]Connell-Crowley L, Harper JW, Goodrich DW: Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 1997, 8(2):287-301.
  • [36]Tetsu O, McCormick F: Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 2003, 3(3):233-245.
  • [37]Conroy A, Stockett DE, Walker D, Arkin MR, Hoch U, Fox JA, Hawtin RE: SNS-032 is a potent and selective CDK 2, 7 and 9 inhibitor that drives target modulation in patient samples. Cancer Chemother Pharmacol 2009, 64(4):723-732.
  • [38]Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, Heimbrook DC, Chen L: Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 2006, 103(28):10660-10665.
  • [39]Dai Y, Dent P, Grant S: Induction of apoptosis in human leukemia cells by the CDK1 inhibitor CGP74514A. Cell Cycle 2002, 1(2):143-152.
  • [40]Boxer RB, Jang JW, Sintasath L, Chodosh LA: Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 2004, 6(6):577-586.
  • [41]D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A, Cardiff RD, Chodosh LA: c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 2001, 7(2):235-239.
  • [42]Arvanitis C, Felsher DW: Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin Cancer Biol 2006, 16(4):313-317.
  • [43]Alles MC, Gardiner-Garden M, Nott DJ, Wang Y, Foekens JA, Sutherland RL, Musgrove EA, Ormandy CJ: Meta-analysis and gene set enrichment relative to ER status reveal elevated activity of MYC and E2F in the “Basal” breast cancer subgroup. PLoS One 2009, 4(3):e4710.
  • [44]Chandriani S, Frengen E, Cowling VH, Pendergrass SA, Perou CM, Whitfield ML, Cole MD: A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS One 2009, 4(8):e6693.
  • [45]Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, Datto MB, Kelley M, Mathey-Prevot B, Potti A, Nevins JR: A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A 2010, 107(15):6994-6999.
  • [46]Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, Creasman KJ, Bazarov AV, Smyth JW, Davis SE, Yaswen P, Mills GB, Esserman LJ, Goga A: MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 2012, 209(4):679-696.
  • [47]Neve RM, Sutterluty H, Pullen N, Lane HA, Daly JM, Krek W, Hynes NE: Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene 2000, 19(13):1647-1656.
  • [48]Park K, Kwak K, Kim J, Lim S, Han S: c-myc amplification is associated with HER2 amplification and closely linked with cell proliferation in tissue microarray of nonselected breast cancers. Hum Pathol 2005, 36(6):634-639.
  • [49]Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, Spichtin H, Maurer R, Mirlacher M, Kochli O, Zuber M, Dieterich H, Mross F, Wilber K, Simon R, Sauter G: Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 2004, 64(23):8534-8540.
  • [50]Perez EA, Jenkins RB, Dueck AC, Wiktor AE, Bedroske PP, Anderson SK, Ketterling RP, Sukov WR, Kanehira K, Chen B, Geiger XJ, Andorfer CA, McCullough AE, Davidson NE, Martino S, Sledge GW, Kaufman PA, Kutteh LA, Gralow JR, Harris LN, Ingle JN, Lingle WL, Reinholz MM: C-MYC alterations and association with patient outcome in early-stage HER2-positive breast cancer from the north central cancer treatment group N9831 adjuvant trastuzumab trial. J Clin Oncol 2011, 29(6):651-659.
  • [51]Yu Q, Geng Y, Sicinski P: Specific protection against breast cancers by cyclin D1 ablation. Nature 2001, 411(6841):1017-1021.
  • [52]Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, Schleker T, Perna D, Tronnersjö S, Murga M, Fernandez-Capetillo O, Barbacid M, Larsson LG, Amati B: Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 2010, 12(1):54-59. sup pp 51–5914
  • [53]Caldon CE, Sergio CM, Schutte J, Boersma MN, Sutherland RL, Carroll JS, Musgrove EA: Estrogen regulation of cyclin E2 requires cyclin D1 but not c-Myc. Mol Cell Biol 2009, 29(17):4623-4639.
  • [54]Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K, Caceres JF, Dubus P, Malumbres M, Barbacid M: Cdk1 is sufficient to drive the mammalian cell cycle. Nature 2007, 448(7155):811-815.
  • [55]Sweeney KJ, Swarbrick A, Sutherland RL, Musgrove EA: Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells. Oncogene 1998, 16(22):2865-2878.
  • [56]O'Connor DS, Wall NR, Porter AC, Altieri DC: A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2002, 2(1):43-54.
  • [57]Ferrao PT, Bukczynska EP, Johnstone RW, McArthur GA: Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene 2012, 31(13):1661-1672.
  • [58]Egle A, Harris AW, Bouillet P, Cory S: Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci U S A 2004, 101(16):6164-6169.
  • [59]Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL: Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 1999, 13(20):2658-2669.
  文献评价指标  
  下载次数:29次 浏览次数:8次