期刊论文详细信息
BMC Genomics
Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus
Hoi Shan Kwan2  Kai Man Kam1  Patrick Tik Wan Law2  Man Kit Cheung2  Wenyan Nong2  Hin-chung Wong3  Lei Li4 
[1]Stanley Ho Centre for Emerging Infectious Diseases, JC School of Public Health, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
[2]School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People’s Republic of China
[3]Department of Microbiology, Soochow University, Taipei 111, Taiwan
[4]Present address: Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
关键词: Environment;    Clinical;    Comparative genomics;    Vibrio parahaemolyticus;   
Others  :  1125717
DOI  :  10.1186/1471-2164-15-1135
 received in 2014-09-05, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before.

Results

Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp webcite) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium.

Conclusions

We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150217024252121.pdf 3214KB PDF download
Figure 5. 98KB Image download
Figure 4. 30KB Image download
Figure 3. 217KB Image download
Figure 2. 113KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Scientific Committee on Enteric Infections and Foodborne Diseases. 2008. Foodborne illness - Intersection between clinical and public health approaches, Centre for Health Protection, Hong Kong SAR http://www.chp.gov.hk/files/pdf/foodborne_illness-intersection_between_clinical_and_public_health_approaches_r.pdf webcite
  • [2]Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA: Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 2007, 20:39-48.
  • [3]Miyamoto Y, Nakamura K, Takizawa K: Seasonal distribution of oceanomonas spp., halophilic bacteria, in the coastal sea. its significance in epidemiology and marine industry. Jpn J Microbiol 1962, 6:141-158.
  • [4]Miyamoto Y, Kato T, Obara Y, Akiyama S, Takizawa K, Yamai S: In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. J Bacteriol 1969, 100:1147-1149.
  • [5]Baker-Austin C, Stockley L, Rangdale R, Martínez-Urtaza J: Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ Microbiol Rep 2010, 2:7-18.
  • [6]Raimondi F, Kao JP, Fiorentini C, Fabbri A, Donelli G, Gasparini N, Rubino A, Fasano A: Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infect Immun 2000, 68:3180-3185.
  • [7]Honda T, Ni YX, Miwatani T: Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun 1988, 56:961-965.
  • [8]Lynch T, Livingstone S, Buenaventura E, Lutter E, Fedwick J, Buret AG, Graham D, DeVinney R: Vibrio parahaemolyticus disruption of epithelial cell tight junctions occurs independently of toxin production. Infect Immun 2005, 73:1275-1283.
  • [9]Piñeyro P, Zhou X, Orfe LH, Friel PJ, Lahmers K, Call DR: Development of two animal models to study the function of Vibrio parahaemolyticus type III secretion systems. Infect Immun 2010, 78:4551-4559.
  • [10]Hiyoshi H, Kodama T, Iida T, Honda T: Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect Immun 2010, 78:1772-1780.
  • [11]Okuda J, Ishibashi M, Hayakawa E, Nishino T, Takeda Y, Mukhopadhyay AK, Garg S, Bhattacharya SK, Nair GB, Nishibuchi M: Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from southeast asian travelers arriving in Japan. J Clin Microbiol 1997, 35:3150-3155.
  • [12]Chowdhury NR, Chakraborty S, Ramamurthy T, Nishibuchi M, Yamasaki S, Takeda Y, Nair GB: Molecular evidence of clonal Vibrio parahaemolyticus pandemic strains. Emerg Infect Dis 2000, 6:631-636.
  • [13]Chowdhury NR, Stine OC, Morris JG, Nair GB: Assessment of evolution of pandemic Vibrio parahaemolyticus by multilocus sequence typing. J Clin Microbiol 2004, 42:1280-1282.
  • [14]Chen Y, Stine OC, Badger JH, Gil AI, Nair GB, Nishibuchi M, Fouts DE: Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence. BMC Genomics 2011, 12:294. BioMed Central Full Text
  • [15]Chatzidaki-Livanis M, Hubbard MA, Gordon K, Harwood VJ, Wright AC: Genetic distinctions among clinical and environmental strains of Vibrio vulnificus. Appl Environ Microbiol 2006, 72:6136-6141.
  • [16]Mahoney JC, Gerding MJ, Jones SH, Whistler CA: Comparison of the pathogenic potentials of environmental and clinical Vibrio parahaemolyticus strains indicates a role for temperature regulation in virulence. Appl Environ Microbiol 2010, 76:7459-7465.
  • [17]Liu M, Chen S: Draft genome sequence of Vibrio parahaemolyticus V110, isolated from shrimp in Hong Kong. Genome Announc 2013, 1:e00300-e00313.
  • [18]Jun JW, Kim JH, Choresca CH, Shin SP, Han JE, Park SC: Draft genome sequence of Vibrio parahaemolyticus SNUVpS-1 isolated from Korean Seafood. Genome Announc 2013., 1doi:10.1128/genomeA.00132-12. Epub 2013 Feb 7
  • [19]Kalburge SS, Polson SW, Boyd Crotty K, Katz L, Turnsek M, Tarr CL, Martinez-Urtaza J, Boyd EF: Complete genome sequence of Vibrio parahaemolyticus environmental strain UCM-V493. Genome Announc 2014., 2doi:10.1128/genomeA.00159-14
  • [20]Kumar BK, Deekshit VK, Rai P, Gurtler V, Karunasagar I, Karunasagar I: Draft genome sequence of trh + Vibrio parahaemolyticus VP-49, isolated from seafood harvested along the Mangalore Coast, India. Genome Announc 2014, 2:e00607-e00614.
  • [21]Wong HC, Liu SH, Wang TK, Lee CL, Chiou CS, Liu DP, Nishibuchi M, Lee BK: Characteristics of Vibrio parahaemolyticus O3:K6 from Asia. Appl Environ Microbiol 2000, 66:3981-3986.
  • [22]Matsumoto C, Okuda J, Ishibashi M, Iwanaga M, Garg P, Rammamurthy T, Wong HC, DePaola A, Kim YB, Albert MJ, Nishibuchi M: Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses. J Clin Microbiol 2000, 38:578-585.
  • [23]Li L: OrthoMCL: identification of Ortholog groups for Eukaryotic Genomes. Genome Res 2003, 13:2178-2189.
  • [24]Boyd EF, Cohen A, Naughton LM, Ussery DW, Binnewies TT, Stine OC, Parent MA: Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol 2008, 8:110. BioMed Central Full Text
  • [25]Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, Iida T: Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect Immun 2008, 76:1016-1023.
  • [26]Tsai S-E, Jong K-J, Tey YH, Yu W-T, Chiou C-S, Lee Y-S, Wong H-C: Molecular characterization of clinical and environmental Vibrio parahaemolyticus isolates in Taiwan. Int J Food Microbiol 2013, 165:18-26.
  • [27]Yu W-T, Jong K-J, Lin Y-R, Tsai S-E, Tey YH, Wong H-C: Prevalence of Vibrio parahaemolyticus in oyster and clam culturing environments in Taiwan. Int J Food Microbiol 2013, 160:185-192.
  • [28]Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL: Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 2005, 55:1160-1182.
  • [29]Shime-Hattori A, Iida T, Arita M, Park K-S, Kodama T, Honda T: Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 2006, 264:89-97.
  • [30]Yildiz FH, Visick KL: Vibrio biofilms: so much the same yet so different. Trends Microbiol 2009, 17:109-118.
  • [31]Velazquez-Roman J, León-Sicairos N, de Jesus Hernández-Díaz L, Canizalez-Roman A: Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front Cell Infect Microbiol 2013, 3:110.
  • [32]García K, Torres R, Uribe P, Hernández C, Rioseco ML, Romero J, Espejo RT: Dynamics of clinical and environmental Vibrio parahaemolyticus strains during seafood-related summer diarrhea outbreaks in southern Chile. Appl Environ Microbiol 2009, 75:7482-7487.
  • [33]Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T: Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 2003, 361:743-749.
  • [34]Frota CC, Papavinasasundaram KG, Davis EO, Colston MJ: The AraC family transcriptional regulator Rv1931c plays a role in the virulence of Mycobacterium tuberculosis. Infect Immun 2004, 72:5483-5486.
  • [35]Plano GV: Modulation of AraC family member activity by protein ligands. Mol Microbiol 2004, 54:287-290.
  • [36]Wang Y, Sun M, Bao H, White AP: T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 2013, 8:e58173.
  • [37]Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes H-W, Horn M, Rattei T: Sequence-based prediction of type III secreted proteins. PLoS Pathog 2009, 5:e1000376.
  • [38]Löwer M, Schneider G: Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One 2009, 4:e5917.
  • [39]Westra ER, Swarts DC, Staals RHJ, Jore MM, Brouns SJJ, van der Oost J: The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu Rev Genet 2012, 46:311-339.
  • [40]Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35:W52-W57.
  • [41]Storz G, Vogel J, Wassarman KM: Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011, 43:880-891.
  • [42]Li L, Huang D, Cheung MK, Nong W, Huang Q, Kwan H-S: BSRD: a repository for bacterial small regulatory RNA. Nucleic Acids Res 2013, 41:D233-D238.
  • [43]Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R: The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014, 42:D206-D214.
  • [44]Abramowicz DA: Aerobic and anaerobic PCB biodegradation in the environment. Environ Health Perspect 1995, 103:97-99.
  • [45]Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011, 39:W347-W352.
  • [46]Nasu H, Iida T, Sugahara T, Yamaichi Y, Park KS, Yokoyama K, Makino K, Shinagawa H, Honda T: A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol 2000, 38:2156-2161.
  • [47]Nozawa T, Furukawa N, Aikawa C, Watanabe T, Haobam B, Kurokawa K, Maruyama F, Nakagawa I: CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS One 2011, 6:e19543.
  • [48]Whitaker WB, Parent MA, Boyd A, Richards GP, Boyd EF: The Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model. Infect Immun 2012, 80:1834-1845.
  • [49]Okura M, Osawa R, Iguchi A, Arakawa E, Terajima J: Genotypic analyses of Vibrio parahaemolyticus and development of a pandemic group-specific multiplex PCR assay. J Clin Microbiol 2003, 41:4676-4682.
  • [50]Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5:e11147.
  • [51]Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA: BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011, 12:402. BioMed Central Full Text
  • [52]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013, 30:2725-2729.
  • [53]Han H, Wong H-C, Kan B, Guo Z, Zeng X, Yin S, Liu X, Yang R, Zhou D: Genome plasticity of Vibrio parahaemolyticus: microevolution of the “pandemic group.”. BMC Genomics 2008, 9:570. BioMed Central Full Text
  文献评价指标  
  下载次数:33次 浏览次数:13次