期刊论文详细信息
BMC Developmental Biology
NumbL is essential for Xenopus primary neurogenesis
Kristine A Henningfeld1  Tomas Pieler1  Olaf Jahn2  Marie Hedderich1  Frank Nieber1 
[1] Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Goettingen 37077, Germany;Max Planck Institute of Experimental Medicine, Proteomics Group, Hermann-Rein-Str. 3, Goettingen 37075, Germany
关键词: Xenopus;    Neuronal differentiation;    Neurogenin;    Primary neurogenesis;    Notch;    Numb;   
Others  :  1085472
DOI  :  10.1186/1471-213X-13-36
 received in 2013-06-03, accepted in 2013-10-04,  发布年份 2013
PDF
【 摘 要 】

Background

Members of the vertebrate Numb family of cell fate determinants serve multiple functions throughout early embryogenesis, including an essential role in the development of the nervous system. The Numb proteins interact with various partner proteins and correspondingly participate in multiple cellular activities, including inhibition of the Notch pathway.

Results

Here, we describe the expression characteristics of Numb and Numblike (NumbL) during Xenopus development and characterize the function of NumbL during primary neurogenesis. NumbL, in contrast to Numb, is expressed in the territories of primary neurogenesis and is positively regulated by the Neurogenin family of proneural transcription factors. Knockdown of NumbL afforded a complete loss of primary neurons and did not lead to an increase in Notch signaling in the open neural plate. Furthermore, we provide evidence that interaction of NumbL with the AP-2 complex is required for NumbL function during primary neurogenesis.

Conclusion

We demonstrate an essential role of NumbL during Xenopus primary neurogenesis and provide evidence for a Notch-independent function of NumbL in this context.

【 授权许可】

   
2013 Nieber et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113173710987.pdf 3734KB PDF download
Figure 5. 103KB Image download
Figure 4. 69KB Image download
Figure 3. 108KB Image download
Figure 2. 114KB Image download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Wang S, Younger-Shepherd S, Jan LY, Jan YN: Only a subset of the binary cell fate decisions mediated by Numb/Notch signaling in Drosophila sensory organ lineage requires Suppressor of Hairless. Development 1997, 124:4435-4446.
  • [2]Nishimura T, Kaibuchi K: Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev Cell 2007, 13:15-28.
  • [3]Santolini E, Puri C, Salcini AE, Gagliani MC, Pelicci PG, Tacchetti C, Di Fiore PP: Numb is an endocytic protein. J Cell Biol 2000, 151:1345-1352.
  • [4]McGill MA, McGlade CJ: Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 2003, 278:23196-23203.
  • [5]Uemura T, Shepherd S, Ackerman L, Jan LY, Jan YN: Numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 1989, 58:349-360.
  • [6]Rhyu MS, Jan LY, Jan YN: Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 1994, 76:477-491.
  • [7]Spana EP, Kopczynski C, Goodman CS, Doe CQ: Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 1995, 121:3489-3494.
  • [8]Guo M, Jan LY, Jan YN: Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 1996, 17:27-41.
  • [9]Verdi JM, Schmandt R, Bashirullah A, Jacob S, Salvino R, Craig CG, Program AE, Lipshitz HD, McGlade CJ: Mammalian NUMB is an evolutionarily conserved signaling adapter protein that specifies cell fate. Curr Biol 1996, 6:1134-1145.
  • [10]Zhong W, Feder JN, Jiang MM, Jan LY, Jan YN: Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 1996, 17:43-53.
  • [11]Zhong W, Jiang MM, Weinmaster G, Jan LY, Jan YN: Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis. Development 1997, 124:1887-1897.
  • [12]Gulino A, Di Marcotullio L, Screpanti I: The multiple functions of Numb. Exp Cell Res 2010, 316:900-906.
  • [13]Dho SE, French MB, Woods SA, McGlade CJ: Characterization of four mammalian numb protein isoforms. Identification of cytoplasmic and membrane-associated variants of the phosphotyrosine binding domain. J Biol Chem 1999, 274:33097-33104.
  • [14]Karaczyn A, Bani-Yaghoub M, Tremblay R, Kubu C, Cowling R, Adams TL, Prudovsky I, Spicer D, Friesel R, Vary C, Verdi JM: Two novel human NUMB isoforms provide a potential link between development and cancer. Neural Dev 2010, 5:31. BioMed Central Full Text
  • [15]Wakamatsu Y, Maynard TM, Jones SU, Weston JA: NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 1999, 23:71-81.
  • [16]Cayouette M, Whitmore AV, Jeffery G, Raff M: Asymmetric segregation of Numb in retinal development and the influence of the pigmented epithelium. J Neurosci 2001, 21:5643-5651.
  • [17]Shen Q, Zhong W, Jan YN, Temple S: Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 2002, 129:4843-4853.
  • [18]Reugels AM, Boggetti B, Scheer N, Campos-Ortega JA: Asymmetric localization of Numb: EGFP in dividing neuroepithelial cells during neurulation in Danio rerio. Dev Dyn 2006, 235:934-948.
  • [19]Toriya M, Tokunaga A, Sawamoto K, Nakao K, Okano H: Distinct functions of human numb isoforms revealed by misexpression in the neural stem cell lineage in the Drosophila larval brain. Dev Neurosci 2006, 28:142-155.
  • [20]McGill MA, Dho SE, Weinmaster G, McGlade CJ: Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem 2009, 284:26427-26438.
  • [21]Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA, Alimandi M, Giannini G, Maroder M, Screpanti I, Gulino A: Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 2006, 8:1415-1423.
  • [22]Zhong W, Jiang MM, Schonemann MD, Meneses JJ, Pedersen RA, Jan LY, Jan YN: Mouse numb is an essential gene involved in cortical neurogenesis. Proc Natl Acad Sci USA 2000, 97:6844-6849.
  • [23]Petersen PH, Zou K, Hwang JK, Jan YN, Zhong W: Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 2002, 419:929-934.
  • [24]Li HS, Wang D, Shen Q, Schonemann MD, Gorski JA, Jones KR, Temple S, Jan LY, Jan YN: Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 2003, 40:1105-1118.
  • [25]Petersen PH, Zou K, Krauss S, Zhong W: Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci 2004, 7:803-811.
  • [26]Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I: Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 2008, 11:1247-1251.
  • [27]Pierfelice T, Alberi L, Gaiano N: Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 2011, 69:840-855.
  • [28]Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, Viale G, Pece S, Di Fiore PP: NUMB controls p53 tumour suppressor activity. Nature 2008, 451:76-80.
  • [29]Lamborghini JE: Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation. J Comp Neurol 1980, 189:323-333.
  • [30]Ma Q, Kintner C, Anderson DJ: Identification of neurogenin, a vertebrate neuronal determination gene. Cell 1996, 87:43-52.
  • [31]Nieber F, Pieler T, Henningfeld KA: Comparative expression analysis of the neurogenins in Xenopus tropicalis and Xenopus laevis. Dev Dyn 2009, 238:451-458.
  • [32]Chitnis A, Henrique D, Lewis J, Ish-Horowicz D, Kintner C: Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 1995, 375:761-766.
  • [33]Wettstein DA, Turner DL, Kintner C: The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 1997, 124:693-702.
  • [34]Revinski DR, Paganelli AR, Carrasco AE, Lopez SL: Delta-Notch signaling is involved in the segregation of the three germ layers in Xenopus laevis. Dev Biol 2010, 339:477-492.
  • [35]Rupp RA, Snider L, Weintraub H: Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev 1994, 8:1311-1323.
  • [36]Coffman CR, Skoglund P, Harris WA, Kintner CR: Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 1993, 73:659-671.
  • [37]Smith WC, Knecht AK, Wu M, Harland RM: Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 1993, 361:547-549.
  • [38]Nieuwkoop PD, Faber J: Normal Table of Development of Xenopus laevis. Amsterdam, North Holland: Daudin; 1967.
  • [39]Harland RM: In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 1991, 36:685-695.
  • [40]Dent JA, Polson AG, Klymkowsky MW: A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 1989, 105:61-74.
  • [41]Oschwald R, Richter K, Grunz H: Localization of a nervous system-specific class II beta-tubulin gene in Xenopus laevis embryos by whole-mount in situ hybridization. Int J Dev Biol 1991, 35:399-405.
  • [42]Bellefroid EJ, Bourguignon C, Hollemann T, Ma Q, Anderson DJ, Kintner C, Pieler T: X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation. Cell 1996, 87:1191-1202.
  • [43]Tonissen KF, Krieg PA: Two neural-cell adhesion molecule (NCAM)-encoding genes in Xenopus laevis are expressed during development and in adult tissues. Gene 1993, 127:243-247.
  • [44]Souopgui J, Solter M, Pieler T: XPak3 promotes cell cycle withdrawal during primary neurogenesis in Xenopus laevis. Embo J 2002, 21:6429-6439.
  • [45]Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H: Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 1995, 268:836-844.
  • [46]Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signalling downstream of activated mammalian Notch. Nature 1995, 377:355-358.
  • [47]Kyriakakis P, Tipping M, Abed L, Veraksa A: Tandem affinity purification in Drosophila: the advantages of the GS-TAP system. Fly 2008, 2:229-235.
  • [48]Jahn O, Hesse D, Reinelt M, Kratzin HD: Technical innovations for the automated identification of gel-separated proteins by MALDI-TOF mass spectrometry. Anal Bioanal Chem 2006, 386:92-103.
  • [49]Patzig J, Jahn O, Tenzer S, Wichert SP, de Monasterio-Schrader P, Rosfa S, Kuharev J, Yan K, Bormuth I, Bremer J, Aguzzi A, Orfaniotou F, Hesse D, Schwab MH, Möbius W, Nave K-A, Werner HB: Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 2011, 31:16369-16386.
  • [50]Verdi JM, Bashirullah A, Goldhawk DE, Kubu CJ, Jamali M, Meakin SO, Lipshitz HD: Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage. Proc Natl Acad Sci USA 1999, 96:10472-10476.
  • [51]Schlosser G: Induction and specification of cranial placodes. Dev Biol 2006, 294:303-351.
  • [52]Chalmers AD, Welchman D, Papalopulu N: Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Dev Cell 2002, 2:171-182.
  • [53]Hartenstein V: Early neurogenesis in Xenopus: the spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord. Neuron 1989, 3:399-411.
  • [54]Chitnis A, Kintner C: Sensitivity of proneural genes to lateral inhibition affects the pattern of primary neurons in Xenopus embryos. Development 1996, 122:2295-2301.
  • [55]Vernon AE, Devine C, Philpott A: The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus. Development 2003, 130:85-92.
  • [56]Bani-Yaghoub M, Kubu CJ, Cowling R, Rochira J, Nikopoulos GN, Bellum S, Verdi JM: A switch in numb isoforms is a critical step in cortical development. Dev Dyn 2007, 236:696-705.
  • [57]Tokumitsu H, Hatano N, Inuzuka H, Sueyoshi Y, Yokokura S, Ichimura T, Nozaki N, Kobayashi R: Phosphorylation of Numb family proteins. possible involvement of Ca2+/calmodulin-dependent protein kinases. J Biol Chem 2005, 280:35108-35118.
  • [58]Tokumitsu H, Hatano N, Yokokura S, Sueyoshi Y, Nozaki N, Kobayashi R: Phosphorylation of Numb regulates its interaction with the clathrin-associated adaptor AP-2. FEBS Lett 2006, 580:5797-5801.
  • [59]Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X: Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 2010, 6:433-444.
  • [60]Fineberg SK, Datta P, Stein CS, Davidson BL: MiR-34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation. PLoS One 2012, 7:e38562.
  • [61]Kyriazis GA, Wei Z, Vandermey M, Jo DG, Xin O, Mattson MP, Chan SL: Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis. J Biol Chem 2008, 283:25492-25502.
  • [62]Sato K, Watanabe T, Wang S, Kakeno M, Matsuzawa K, Matsui T, Yokoi K, Murase K, Sugiyama I, Ozawa M, Kaibuchi K: Numb controls E-cadherin endocytosis through p120 catenin with aPKC. Mol Biol Cell 2011, 22:3103-3119.
  • [63]Vaira V, Faversani A, Martin NM, Garlick DS, Ferrero S, Nosotti M, Kissil JL, Bosari S, Altieri DC: Regulation of lung cancer metastasis by Klf4-numb-like signaling. Cancer Res 2013, 73:2695-2705.
  文献评价指标  
  下载次数:63次 浏览次数:54次