| BMC Developmental Biology | |
| MiR-21 is required for efficient kidney regeneration in fish | |
| Christoph Englert2  Matthias Platzer3  Marco Groth3  Sven Engel1  Martin Franke4  Stefan Pietsch1  Beate Hoppe1  | |
| [1] Molecular Genetics Laboratory, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena, 07745, Germany;Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Fürstengraben 1, Jena, 07743, Germany;Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena, 07745, Germany;Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 13353, Germany | |
| 关键词: fosl1; igfbp3; Teleost killifish; miRNA; LNA; Kidney regeneration; | |
| Others : 1234326 DOI : 10.1186/s12861-015-0089-2 |
|
| received in 2015-06-16, accepted in 2015-10-25, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Acute kidney injury in mammals, which is caused by cardiovascular diseases or the administration of antibiotics with nephrotoxic side-effects is a life-threatening disease, since loss of nephrons is irreversible in mammals. In contrast, fish are able to generate new nephrons even in adulthood and thus provide a good model to study renal tubular regeneration.
Results
Here, we investigated the early response after gentamicin-induced renal injury, using the short-lived killifish Nothobranchius furzeri. A set of microRNAs was differentially expressed after renal damage, among them miR-21, which was up-regulated. A locked nucleic acid-modified antimiR-21 efficiently knocked down miR-21 activity and caused a lag in the proliferative response, enhanced apoptosis and an overall delay in regeneration. Transcriptome profiling identified apoptosis as a process that was significantly affected upon antimiR-21 administration. Together with functional data this suggests that miR-21 acts as a pro-proliferative and anti-apoptotic factor in the context of kidney regeneration in fish. Possible downstream candidate genes that mediate its effect on proliferation and apoptosis include igfbp3 and fosl1, among other genes.
Conclusion
In summary, our findings extend the role of miR-21 in the kidney. For the first time we show its functional involvement in regeneration indicating that fast proliferation and reduced apoptosis are important for efficient renal tubular regeneration.
【 授权许可】
2015 Hoppe et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20151129020955949.pdf | 2179KB | ||
| Fig. 4. | 86KB | Image | |
| Fig. 3. | 102KB | Image | |
| Fig. 2. | 126KB | Image | |
| Fig. 1. | 193KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
【 参考文献 】
- [1]Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008; 2(3):284-291.
- [2]Salice CJ, Rokous JS, Kane AS, Reimschuessel R. New nephron development in goldfish (Carassius auratus) kidneys following repeated gentamicin-induced nephrotoxicosis. Comp Med. 2001; 51(1):56-59.
- [3]Diep CQ, Ma D, Deo RC, Holm TM, Naylor RW, Arora N, Wingert RA, Bollig F, Djordjevic G, Lichman B et al.. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature. 2011; 470(7332):95-100.
- [4]Watanabe N, Kato M, Suzuki N, Inoue C, Fedorova S, Hashimoto H, Maruyama S, Matsuo S, Wakamatsu Y. Kidney regeneration through nephron neogenesis in medaka. Develop Growth Differ. 2009; 51(2):135-143.
- [5]Wang L, Fu C, Fan H, Du T, Dong M, Chen Y, Jin Y, Zhou Y, Deng M, Gu A et al.. miR-34b regulates multiciliogenesis during organ formation in zebrafish. Development. 2013; 140(13):2755-2764.
- [6]Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A. 2010; 107(32):14339-14344.
- [7]Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am. J. Physiol. Renal Physiol. 2011; 301(4):F793-801.
- [8]Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, Li J, Tran PT, Kaimal V, Huang X et al.. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012; 4(121):121-118.
- [9]Murawala P, Tanaka EM, Currie JD. Regeneration: the ultimate example of wound healing. Semin Cell Dev Biol. 2012; 23(9):954-962.
- [10]Terzibasi E, Valenzano DR, Cellerino A. The short-lived fish Nothobranchius furzeri as a new model system for aging studies. Exp Gerontol. 2007; 42(1–2):81-89.
- [11]Hartmann N, Reichwald K, Wittig I, Drose S, Schmeisser S, Luck C, Hahn C, Graf M, Gausmann U, Terzibasi E et al.. Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell. 2011; 10(5):824-831.
- [12]Harel I, Benayoun BA, Machado B, Singh PP, Hu CK, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE et al.. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell. 2015; 160(5):1013-1026.
- [13]Zhou W, Boucher RC, Bollig F, Englert C, Hildebrandt F. Characterization of mesonephric development and regeneration using transgenic zebrafish. Am. J. Physiol. Renal Physiol. 2010; 299(5):F1040-1047.
- [14]Fedorova S, Miyamoto R, Harada T, Isogai S, Hashimoto H, Ozato K, Wakamatsu Y. Renal glomerulogenesis in medaka fish, Oryzias latipes. Dev. Dyn. 2008; 237(9):2342-2352.
- [15]Kobelkowsky A. Morphology and Dissection Technique of the Kidney of the Grey Snapper Lutjanus griseus (Teleostei: Lutjanidae). Int J Morphol. 2013; 31(2):553-561.
- [16]Song HD, Sun XJ, Deng M, Zhang GW, Zhou Y, Wu XY, Sheng Y, Chen Y, Ruan Z, Jiang CL et al.. Hematopoietic gene expression profile in zebrafish kidney marrow. Proc Natl Acad Sci U S A. 2004; 101(46):16240-16245.
- [17]Augusto J, Smith B, Smith S, Robertson J, Reimschuessel R. Gentamicin-induced nephrotoxicity and nephroneogenesis in Oreochromis nilotica, a tilapian fish. Dis Aquat Org. 1996; 26(1):49-58.
- [18]Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA. Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev Biol. 2005; 285(2):316-329.
- [19]McCampbell KK, Springer KN, Wingert RA. Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration. Stem Cells Int. 2015; 2015:547636.
- [20]Davidson AJ. Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr Nephrol. 2011; 26(9):1435-1443.
- [21]Wei Q, Bhatt K, He HZ, Mi QS, Haase VH, Dong Z. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 2010; 21(5):756-761.
- [22]Saal S, Harvey SJ. MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens. 2009; 18(4):317-323.
- [23]Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest. 2012; 122(3):1097-1108.
- [24]Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U et al.. LNA-mediated microRNA silencing in non-human primates. Nature. 2008; 452(7189):896-899.
- [25]Liu H, Huang X, Liu X, Xiao S, Zhang Y, Xiang T, Shen X, Wang G, Sheng B. miR-21 Promotes Human Nucleus Pulposus Cell Proliferation through PTEN/AKT Signaling. Int J Mol Sci. 2014; 15(3):4007-4018.
- [26]Yoo EG, Lee WJ, Kim JH, Chae HW, Hyun SE, Kim DH, Kim HS, Oh Y. Insulin-like growth factor-binding protein-3 mediates high glucose-induced apoptosis by increasing oxidative stress in proximal tubular epithelial cells. Endocrinology. 2011; 152(8):3135-3142.
- [27]Yang CH, Yue J, Pfeffer SR, Fan M, Paulus E, Hosni-Ahmed A, Sims M, Qayyum S, Davidoff AM, Handorf CR et al.. MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J. Biol. Chem. 2014; 289(36):25079-25087.
- [28]Pennanen PT, Sarvilinna NS, Toimela T, Ylikomi TJ. Inhibition of FOSL1 overexpression in antiestrogen-resistant MCF-7 cells decreases cell growth and increases vacuolization and cell death. Steroids. 2011; 76(10–11):1063-1068.
- [29]Li Y, Yan L, Zhang W, Hu N, Chen W, Wang H, Kang M, Ou H. MicroRNA-21 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting activator protein-1. Am J Transl Res. 2014; 6(5):507-516.
- [30]Xu X, Kriegel AJ, Liu Y, Usa K, Mladinov D, Liu H, Fang Y, Ding X, Liang M. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012; 82(11):1167-1175.
- [31]Tozzini ET, Dorn A, Ng'oma E, Polacik M, Blazek R, Reichwald K, Petzold A, Watters B, Reichard M, Cellerino A. Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evol Biol. 2013; 13:77. BioMed Central Full Text
- [32]Terzibasi Tozzini E, Savino A, Ripa R, Battistoni G, Baumgart M, Cellerino A. Regulation of microRNA expression in the neuronal stem cell niches during aging of the short-lived annual fish Nothobranchius furzeri. Front Cell Neurosci. 2014; 8:51.
- [33]Petzold A, Reichwald K, Groth M, Taudien S, Hartmann N, Priebe S, Shagin D, Englert C, Platzer M. The transcript catalogue of the short-lived fish Nothobranchius furzeri provides insights into age-dependent changes of mRNA levels. BMC Genomics. 2013; 14:185. BioMed Central Full Text
- [34]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. BioMed Central Full Text
- [35]Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-140.
- [36]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106. BioMed Central Full Text
- [37]Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC bioinformatics. 2006; 7:191. BioMed Central Full Text
- [38]Priebe S MU: Assigment of orthologous genes by utlization of multiple databases: the orthology package in R. SCITEPRESS – Science and Technology Publications 2013. Lissabon: Bioinformatics 2013 - 4th Int. Conf. on Bioinformatics Models, Methods and Algorithms 1:pp. 105–110.
- [39]da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57.
- [40]Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011; 6(7):e21800.
PDF