期刊论文详细信息
BMC Genomics
Hepatic transcriptomic profiling reveals early toxicological mechanisms of uranium in Atlantic salmon (Salmo salar)
Knut Erik Tollefsen3  Tore Høgåsen3  Bjørn Olav Rosseland1  Lene Sørlie Heier2  Hans-Christian Teien2  Brit Salbu2  You Song3 
[1] Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, P.O. Box 5003, N-1432 Ås, Norway;Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway;Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
关键词: Toxicological mechanism;    Mode of action;    Pathway;    Transcription;    Microarray;    in vivo;    Fish;    Depleted uranium;   
Others  :  1216256
DOI  :  10.1186/1471-2164-15-694
 received in 2013-11-10, accepted in 2014-08-11,  发布年份 2014
PDF
【 摘 要 】

Background

Uranium (U) is a naturally occurring radionuclide that has been found in the aquatic environment due to anthropogenic activities. Exposure to U may pose risk to aquatic organisms due to its radiological and chemical toxicity. The present study aimed to characterize the chemical toxicity of U in Atlantic salmon (Salmo salar) using depleted uranium (DU) as a test model. The fish were exposed to three environmentally relevant concentrations of DU (0.25, 0.5 and 1.0 mg U/L) for 48 h. Hepatic transcriptional responses were studied using microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). Plasma variables and chromosomal damages were also studied to link transcriptional responses to potential physiological changes at higher levels.

Results

The microarray gene expression analysis identified 847, 891 and 766 differentially expressed genes (DEGs) in the liver of salmon after 48 h exposure to 0.25, 0.5 and 1.0 mg/L DU, respectively. These DEGs were associated with known gene ontology functions such as generation of precursor metabolites and energy, carbohydrate metabolic process and cellular homeostasis. The salmon DEGs were then mapped to mammalian orthologs and subjected to protein-protein network and pathway analysis. The results showed that various toxicity pathways involved in mitochondrial functions, oxidative stress, nuclear receptor signaling, organ damage were commonly affected by all DU concentrations. Eight genes representative of several key pathways were further verified using qPCR No significant formation of micronuclei in the red blood cells or alterations of plasma stress variables were identified.

Conclusion

The current study suggested that the mitochondrion may be a key target of U chemical toxicity in salmon. The induction of oxidative stress and uncoupling of oxidative phosphorylation may be two potential modes of action (MoA) of DU. These MoAs may subsequently lead to downstream events such as apoptosis, DNA repair, hypoxia signaling and immune response. The early toxicological mechanisms of U chemical toxicity in salmon has for the first time been systematically profiled. However, no other physiological changes were observed. Future efforts to link transcriptional responses to adverse effects have been outlined as important for understanding of potential risk to aquatic organisms.

【 授权许可】

   
2014 Song et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629140316375.pdf 3375KB PDF download
Figure 9. 140KB Image download
Figure 8. 112KB Image download
Figure 7. 63KB Image download
Figure 6. 103KB Image download
Figure 5. 62KB Image download
Figure 4. 109KB Image download
Figure 3. 83KB Image download
Figure 2. 70KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]CCME: Canadian water quality guidelines for the protection of aquatic life: Uranium. In Canadian environmental quality guidelines. Edited by CCME. Winnipeg: Canadian Council of Ministers of the Environment; 2011.
  • [2]Gagnaire B, Boyer P, Bonzom JM, Lecomte-Pradines C, Simon O, Gilbin R: Transfer modelling and toxicity evaluation of the effluent from an installation of cleansing and uranium recovery using a battery of bioassays. Ecotoxicology 2011, 20(1):187-201.
  • [3]Salbu B, Burkitbaev M, Stromman G, Shishkov I, Kayukov P, Uralbekov B, Rosseland BO: Environmental impact assessment of radionuclides and trace elements at the Kurday U mining site, Kazakhstan. J Environ Radioact 2013, 123:14-27.
  • [4]Stromman G, Rosseland BO, Skipperud L, Burkitbaev LM, Uralbekov B, Heier LS, Salbu B: Uranium activity ratio in water and fish from pit lakes in Kurday, Kazakhstan and Taboshar, Tajikistan. J Environ Radioact 2013, 123:71-81.
  • [5]Goulet R, Fortin C, Spry DJ: Uranium. In Fish Physiology: Homeostasis and Toxicology of Non-Essential Metals. 31st edition. Edited by Chris M. San Diego, CA: Academic Press; 2011:391-428. [Wood APFaCJB]
  • [6]Lerebours A, Gonzalez P, Adam C, Camilleri V, Bourdineaud JP, Garnier-Laplace J: Comparative analysis of gene expression in brain, liver, skeletal muscles, and gills of zebrafish (Danio Rerio) exposed to environmentally relevant waterborne uranium concentrations. Environ Toxicol Chem 2009, 28(6):1271-1278.
  • [7]Song Y, Salbu B, Heier LS, Teien HC, Lind OC, Oughton D, Petersen K, Rosseland BO, Skipperud L, Tollefsen KE: Early stress responses in Atlantic salmon (Salmo salar) exposed to environmentally relevant concentrations of uranium. Aquat Toxicol 2012, 112:62-71.
  • [8]Bleise A, Danesi PR, Burkart W: Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 2003, 64(2–3):93-112.
  • [9]Darolles C, Broggio D, Feugier A, Frelon S, Dublineau I, De Meo M, Petitot F: Different genotoxic profiles between depleted and enriched uranium. Toxicol Lett 2010, 192(3):337-348.
  • [10]Sheppard SC, Sheppard MI, Gallerand MO, Sanipelli B: Derivation of ecotoxicity thresholds for uranium. J Environ Radioact 2005, 79(1):55-83.
  • [11]Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB: Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Env Health-Pt b-Crit Rev 2004, 7(4):297-317.
  • [12]Lerebours A, Adam-Guillermin C, Brethes D, Frelon S, Floriani M, Camilleri V, Garnier-Laplace J, Bourdineaud JP: Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium. Aquat Toxicol 2010, 100(1):66-74.
  • [13]Taulan M, Paquet F, Argiles A, Demaille J, Romey MC: Comprehensive analysis of the renal transcriptional response to acute uranyl nitrate exposure. BMC Genomics 2006, 7:2.
  • [14]Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK: Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 2010, 29(3):730-741.
  • [15]Barillet S, Adam C, Palluel O, Devaux A: Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem / SETAC 2007, 26(3):497-505.
  • [16]Barillet S, Adam-Guillermin C, Palluel O, Porcher JM, Devaux A: Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure. Environ Pollut 2011, 159(2):495-502.
  • [17]Kraemer LD, Evans D: Uranium bioaccumulation in a freshwater ecosystem: impact of feeding ecology. Aquat Toxicol 2012, 124–125:163-170.
  • [18]Lerebours A, Cambier S, Hislop L, Adam-Guillermin C, Bourdineaud JP: Genotoxic effects of exposure to waterborne uranium, dietary methylmercury and hyperoxia in zebrafish assessed by the quantitative RAPD-PCR method. Mutat Res 2013, 755(1):55-60.
  • [19]Lourenco J, Castro BB, Machado R, Nunes B, Mendo S, Goncalves F, Pereira R: Genetic, biochemical, and individual responses of the Teleost Fish Carassius auratus to Uranium. Arch Environ Contam Toxicol 2010, 58(4):1023-1031.
  • [20]Pyle GG, Swanson SM, Lehmkuhl DM: Toxicity of uranium mine-receiving waters to caged fathead minnows, Pimephales promelas. Ecotoxicol Environ Saf 2001, 48(2):202-214.
  • [21]Sack MN: Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res 2006, 72(2):210-219.
  • [22]Pourahmad J, Shaki F, Tanbakosazan F, Ghalandari R, Ettehadi HA, Dahaghin E: Protective effects of fungal beta-(1 - > 3)-D-glucan against oxidative stress cytotoxicity induced by depleted uranium in isolated rat hepatocytes. Hum Exp Toxicol 2011, 30(3):173-181.
  • [23]Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J: Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta-Gen Subj 2012, 1820(12):1940-1950.
  • [24]Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J: Depleted uranium induces disruption of energy homeostasis and oxidative stress in isolated rat brain mitochondria. Metallomics 2013, 5(6):736-744.
  • [25]Shaki F, Pourahmad J: Mitochondrial toxicity of depleted uranium: protection by beta-glucan. Iran J Pharm Res 2013, 12(1):131-140.
  • [26]Thiebault C, Carriere M, Milgram S, Simon A, Avoscan L, Gouget B: Uranium induces apoptosis and is genotoxic to normal rat kidney (NRK-52(E)) proximal cells. Toxicol Sci 2007, 98(2):479-487.
  • [27]Pourahmad J, Ghashang M, Ettehadi HA, Ghalandari R: A search for cellular and molecular mechanisms involved in depleted uranium (DU) toxicity. Environ Toxicol 2006, 21(4):349-354.
  • [28]Carafoli E, Tiozzo R, Pasquali-Ronchetti I, Laschi R: A study of Ca2+ metabolism in kidney mitochondria during acute uranium intoxication. Lab Invest 1971, 25(6):516-527.
  • [29]Tissandie E, Gueguen Y, Lobaccaro JM, Grandcolas L, Voisin P, Aigueperse J, Gourmelon P, Souidi M: In vivo effects of chronic contamination with depleted uranium on vitamin D3 metabolism in rat. Biochim Biophys Acta 2007, 1770(2):266-272.
  • [30]De Stefano C, Gianguzza A, Pettignano A, Sammartano S: Interaction of UO2(2+) with ATP in aqueous ionic media. Biophys Chem 2005, 117(2):147-153.
  • [31]Leonard SS, Harris GK, Shi XL: Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 2004, 37(12):1921-1942.
  • [32]Kelly JM, Janz DM: Assessment of oxidative stress and histopathology in juvenile northern pike (Esox lucius) inhabiting lakes downstream of a uranium mill. Aquat Toxicol 2009, 92(4):240-249.
  • [33]Drose S, Brandt U: Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 2012, 748:145-169.
  • [34]Brand MD: Uncoupling to survive? the role of mitochondrial inefficiency in ageing. Exp Gerontol 2000, 35(6–7):811-820.
  • [35]Skulachev VP: Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 1996, 29(2):169-202.
  • [36]Asher G, Lotem J, Sachs L, Kahana C, Shaul Y: Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci U S A 2002, 99(20):13125-13130.
  • [37]Hay RT: SUMO: a history of modification. Mol Cell 2005, 18(1):1-12.
  • [38]Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM: Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 2002, 277(33):29936-29944.
  • [39]Kornitzer D, Ciechanover A: Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 2000, 182(1):1-11.
  • [40]Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, Jelkmann W, Jaakkola P, Metzen E: Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 2004, 381:761-767.
  • [41]Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C: Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 1999, 460(2):251-256.
  • [42]Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A: Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000, 14(1):34-44.
  • [43]Barillet S, Larno V, Floriani M, Devaux A, Adam-Guillermin C: Ultrastructural effects on gill, muscle, and gonadal tissues induced in zebrafish (Danio rerio) by a waterborne uranium exposure. Aquat Toxicol 2010, 100(3):295-302.
  • [44]Tran D, Massabuau JC, Garnier-Laplace J: Impact of hypoxia on hemolymph contamination by uranium in an aquatic animal, the freshwater clam Corbicula fluminea. Environ Pollut 2008, 156(3):821-826.
  • [45]Galanis A, Karapetsas A, Sandaltzopoulos R: Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat Res Genet Toxicol Environ Mutagen 2009, 674(1–2):31-35.
  • [46]Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH: Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg 2013, 58(1):219-230.
  • [47]Gradin K, McGuire J, Wenger RH, Kvietikova I, Whitelaw ML, Toftgard R, Tora L, Gassmann M, Poellinger L: Functional interference between hypoxia and dioxin signal transduction pathways: Competition for recruitment of the Arnt transcription factor. Mol Cell Biol 1996, 16(10):5221-5231.
  • [48]Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, Mechta-Grigoriou F: JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 2004, 118(6):781-794.
  • [49]Pouyssegur J, Mechta-Grigoriou F: Redox regulation of the hypoxia-inducible factor. Biol Chem 2006, 387(10–11):1337-1346.
  • [50]Kietzmann T, Gorlach A: Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 2005, 16(4–5):474-486.
  • [51]Stearns DM, Yazzie M, Bradley AS, Coryell VH, Shelley JT, Ashby A, Asplund CS, Lantz RC: Uranyl acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster ovary EM9 cells. Mutagenesis 2005, 20(6):417-423.
  • [52]Yazzie M, Gamble SL, Civitello ER, Stearns DM: Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem Res Toxicol 2003, 16(4):524-530.
  • [53]Cooley HM, Evans RE, Klaverkamp JF: Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 2000, 48(4):495-515.
  • [54]Gagnaire B, Cavalie I, Camilleri V, Adam-Guillermin C: Effects of depleted uranium on oxidative stress, detoxification, and defence parameters of zebrafish Danio rerio. Arch Environ Contam Toxicol 2013, 64(1):140-150.
  • [55]Taulan M, Paquet F, Maubert C, Delissen O, Demaille J, Romey MC: Renal toxicogenomic response to chronic uranyl nitrate insult in mice. Environ Health Perspect 2004, 112(16):1628-1635.
  • [56]Wan B, Fleming JT, Schultz TW, Sayler GS: In vitro immune toxicity of depleted uranium: effects on murine macrophages, CD4+ T cells, and gene expression profiles. Environ Health Perspect 2006, 114(1):85-91.
  • [57]Loh J, Fraser J: Metal-derivatized major histocompatibility complex: zeroing in on contact hypersensitivity. J Exp Med 2003, 197(5):549-552.
  • [58]Wolk K, Witte E, Witte K, Warszawska K, Sabat R: Biology of interleukin-22. Semin Immunopathol 2010, 32(1):17-31.
  • [59]Biggs K, Seidel JS, Wilson A, Martyniuk CJ: Gamma-Amino-butyric acid (GABA) receptor subunit and transporter expression in the gonad and liver of the fathead minnow (Pimephales promelas). Comp Biochem Physiol A Mol Integr Physiol 2013, 166(1):119-127.
  • [60]Trudeau VL, Spanswick D, Fraser EJ, Lariviere K, Crump D, Chiu S, MacMillan M, Schulz RW: The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochem Cell Biol 2000, 78(3):241-259.
  • [61]Gardner LB, Hori T, Chen F, Baine AMT, Hata T, Uemoto S, Nguyen JH: Effect of specific activation of gamma-aminobutyric acid receptor in vivo on oxidative stress-induced damage after extended hepatectomy. Hepatol Res 2012, 42(11):1131-1140.
  • [62]Pretorius E, Bester J, Vermeulen N, Lipinski B: Oxidation inhibits iron-induced blood coagulation. Curr Drug Targets 2013, 14(1):13-19.
  • [63]cGRASP project http://web.uvic.ca/grasp/microarray/ webcite
  • [64]Unigene http://www.ncbi.nlm.nih.gov/unigene webcite
  • [65]Primer3 v0.4.0 http://bioinfo.ut.ee/primer3-0.4.0/primer3/input.htm webcite
  • [66]GenBank http://www.ncbi.nlm.nih.gov/genbank/ webcite
  • [67]R-3.0.2 http://www.r-project.org/ webcite
  • [68]R script for K-means cluster analysis http://www.mattpeeples.net/kmeans.html webcite
  • [69]Venny http://bioinfogp.cnb.csic.es/tools/venny/index.html webcite
  • [70]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27(3):431-432.
  • [71]Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005, 21(16):3448-3449.
  • [72]BLAST2GO http://www.blast2go.com webcite
  • [73]Ingenuity systems http://www.ingenuity.com/products/ipa webcite
  • [74]NCBI Reference Sequence Database (RefSeq) http://www.ncbi.nlm.nih.gov/refseq/ webcite
  • [75]Inparanoid7 http://inparanoid.sbc.su.se/cgi-bin/index.cgi webcite
  • [76]Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O, Sonnhammer EL: InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 2010, 38(Database issue):D196-D203.
  文献评价指标  
  下载次数:120次 浏览次数:53次