期刊论文详细信息
BMC Genomics
Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle
Christopher J Creevey1  Donagh P Berry3  Anthony G Doran2 
[1] Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FG, UK;Molecular Evolution and Bioinformatics Unit, Biology Department, NUI Maynooth, Maynooth, Co. Kildare, Ireland;Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
关键词: Biological pathways;    Carcass;    Holstein-Friesian;    Single nucleotide polymorphism;    Genome-wide association;   
Others  :  1139341
DOI  :  10.1186/1471-2164-15-837
 received in 2013-06-20, accepted in 2014-09-25,  发布年份 2014
PDF
【 摘 要 】

Background

Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation.

Results

Following adjustment for false discovery (q-value < 0.05), 479 quantitative trait loci (QTL) were associated with at least one of the four carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway.

Conclusions

A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were shown to be involved in various aspects of bovine carcass performance. These core genes and biological processes may form the foundation for further investigation to identify causative mutations involved in each trait. Results reported here support previous findings suggesting conservation of key biological processes involved in growth and metabolism.

【 授权许可】

   
2014 Doran et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321095038357.pdf 798KB PDF download
Figure 2. 18KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Wray NR, Goddard ME, Visscher PM: Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 2007, 17(10):1520-1528.
  • [2]de Roos AP, Schrooten C, Veerkamp RF, van Arendonk JA: Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. J Dairy Sci 2011, 94(3):1559-1567.
  • [3]McClure MC, Morsci NS, Schnabel RD, Kim JW, Yao P, Rolf MM, McKay SD, Gregg SJ, Chapple RH, Northcutt SL, Taylor JF: A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet 2010, 41(6):597-607.
  • [4]Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N, Sugimoto Y, Takasuga A: Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet 2012, 13:40.
  • [5]Setoguchi K, Furuta M, Hirano T, Nagao T, Watanabe T, Sugimoto Y, Takasuga A: Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet 2009, 10:43.
  • [6]Takasuga A, Watanabe T, Mizoguchi Y, Hirano T, Ihara N, Takano A, Yokouchi K, Fujikawa A, Chiba K, Kobayashi N, Tatsuda K, Oe T, Furukawa-Kuroiwa M, Nishimura-Abe A, Fujita T, Inoue K, Mizoshita K, Ogino A, Sugimoto Y: Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm Genome 2007, 18(2):125-136.
  • [7]Lindholm-Perry AK, Sexten AK, Kuehn LA, Smith TP, King DA, Shackelford SD, Wheeler TL, Ferrell CL, Jenkins TG, Snelling WM, Freetly HC: Association, effects and validation of polymorphisms within the NCAPG - LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genet 2011, 12:103.
  • [8]Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997, 17(1):71-74.
  • [9]McPherron AC, Lee SJ: Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 1997, 94(23):12457-12461.
  • [10]Irish Cattle Breeding Federation: Irish Cattle Breeding Federation. http://www.icbf.com webcite
  • [11]Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O'Connell J, Moore SS, Smith TP, Sonstegard TS, Van Tassell CP: Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 2009, 4(4):e5350.
  • [12]Pabiou T, Fikse WF, Cromie AR, Keane MG, Nasholm A, Berry DP: Use of digital images to predict carcass cut yields in cattle. Livest Sci 2011, 137(1–3):130-140.
  • [13]Harris B, Johnson D: Approximate reliability of genetic evaluations under an animal model. J Dairy Sci 1998, 81(10):2723-2728.
  • [14]Berry D, Kearney F, Harris B: Genomic selection in Ireland. Proceedings of the Interbull International Workshop: January 26–29, Uppsala, Sweden 2009, 29-34.
  • [15]Gilmour AR, Cullis BR, Gogel BJ, Welham SJ, Thompson R: ASReml User Guide Release 3.0. UK: VSN International Ltd, Hemel Hempstead, HP1 1ES; 2009.
  • [16]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003, 100(16):9440-9445.
  • [17]Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157(4):1819-1829.
  • [18]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
  • [19]Young MD, Wakefield MJ, Smyth GK, Oshlack A: Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010, 11(2):R14. BioMed Central Full Text
  • [20]van den Berg I, Fritz S, Boichard D: QTL fine mapping with Bayes C(pi): a simulation study. Genet Sel Evol 2013, 45:19. BioMed Central Full Text
  • [21]Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R: Additive genetic variability and the Bayesian alphabet. Genetics 2009, 183(1):347-363.
  • [22]Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL: AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 2008, 24(4):581-583.
  • [23]Cowles MK, Carlin BP: Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 1996, 91(434):883-904.
  • [24]Oszkiewicz D, Muinonen K, Virtanen J, Granvik M, Bowell E: Modeling collision probability for Earth-impactor 2008 TC3. Planet Space Sci 2012, 73(1):30-38.
  • [25]Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA: The impact of genetic architecture on genome-wide evaluation methods. Genetics 2010, 185(3):1021-1031.
  • [26]Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL: Bayesian phylogenetic analysis of combined data. Syst Biol 2004, 53(1):47-67.
  • [27]Tan B, Yin Y, Liu Z, Li X, Xu H, Kong X, Huang R, Tang W, Shinzato I, Smith SB, Wu G: Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 2009, 37(1):169-175.
  • [28]Clempson AM, Pollott GE, Brickell JS, Bourne NE, Munce N, Wathes DC: Evidence that leptin genotype is associated with fertility, growth, and milk production in Holstein cows. J Dairy Sci 2011, 94(7):3618-3628.
  • [29]Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B: A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998, 392(6674):398-401.
  • [30]Delavaud C, Ferlay A, Faulconnier Y, Bocquier F, Kann G, Chilliard Y: Plasma leptin concentration in adult cattle: effects of breed, adiposity, feeding level, and meal intake. J Anim Sci 2002, 80(5):1317-1328.
  • [31]Geary TW, McFadin EL, MacNeil MD, Grings EE, Short RE, Funston RN, Keisler DH: Leptin as a predictor of carcass composition in beef cattle. J Anim Sci 2003, 81(1):1-8.
  • [32]Berger J, Moller DE: The mechanisms of action of PPARs. Annu Rev Med 2002, 53:409-435.
  • [33]Ehrenborg E, Krook A: Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev 2009, 61(3):373-393.
  • [34]Canovas A, Quintanilla R, Amills M, Pena RN: Muscle transcriptomic profiles in pigs with divergent phenotypes for fatness traits. BMC Genomics 2010, 11:372. BioMed Central Full Text
  • [35]Abbott BD: Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod Toxicol 2009, 27(3–4):246-257.
  • [36]Tien ES, Hannon DB, Thompson JT, Vanden Heuvel JP: Examination of Ligand-Dependent Coactivator Recruitment by Peroxisome Proliferator-Activated Receptor-alpha (PPARalpha). PPAR Res 2006, 2006:69612.
  • [37]Tan NS, Michalik L, Desvergne B, Wahli W: Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. J Steroid Biochem 2005, 93(2–5):99-105.
  • [38]Furuhashi M, Hotamisligil GS: Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008, 7(6):489-503.
  • [39]Hertzel AV, Bernlohr DA: The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 2000, 11(5):175-180.
  • [40]Storch J, McDermott L: Structural and functional analysis of fatty acid-binding proteins. J Lipid Res 2009, 50(Suppl):S126-S131.
  • [41]Pabiou T, Fikse WF, Amer PR, Cromie AR, Nasholm A, Berry DP: Genetic relationships between carcass cut weights predicted from video image analysis and other performance traits in cattle. Animal 2012, 6(9):1389-1397.
  • [42]Toker A: Phosphoinositides and signal transduction. Cell Mol Life Sci 2002, 59(5):761-779.
  • [43]Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B: Phosphoinositides: lipid regulators of membrane proteins. J Physiol Lond 2010, 588(17):3179-3185.
  • [44]Payrastre B, Missy K, Giuriato S, Bodin S, Plantavid M, Gratacap M: Phosphoinositides: key players in cell signalling, in time and space. Cell Signal 2001, 13(6):377-387.
  • [45]Sasaki T, Sasaki J, Sakai T, Takasuga S, Suzuki A: The physiology of phosphoinositides. Biol Pharm Bull 2007, 30(9):1599-1604.
  • [46]Bridges D, Saltiel AR: Phosphoinositides in insulin action and diabetes. Curr Top Microbiol Immunol 2012, 362:61-85.
  • [47]Cantrell DA: Phosphoinositide 3-kinase signalling pathways. J Cell Sci 2001, 114(8):1439-1445.
  • [48]Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ: Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004, 350(26):2682-2688.
  • [49]McPherron AC, Lawler AM, Lee SJ: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387(6628):83-90.
  • [50]Yamaguchi Y, Hearing VJ: Physiological factors that regulate skin pigmentation. Biofactors 2009, 35(2):193-199.
  • [51]Klungland H, Vage DI, Gomez-Raya L, Adalsteinsson S, Lien S: The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm Genome 1995, 6(9):636-639.
  • [52]Kijas JM, Wales R, Tornsten A, Chardon P, Moller M, Andersson L: Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 1998, 150(3):1177-1185.
  • [53]Marklund L, Moller MJ, Sandberg K, Andersson L: A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses. Mamm Genome 1996, 7(12):895-899.
  • [54]Pryce JE, Hayes BJ, Bolormaa S, Goddard ME: Polymorphic regions affecting human height also control stature in cattle. Genetics 2011, 187(3):981-984.
  • [55]Lemay DG, Lynn DJ, Martin WF, Neville MC, Casey TM, Rincon G, Kriventseva EV, Barris WC, Hinrichs AS, Molenaar AJ, Pollard KS, Maqbool NJ, Singh K, Murney R, Zdobnov EM, Tellam RL, Medrano JF, German JB, Rijnkels M: The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol 2009, 10(4):R43. BioMed Central Full Text
  • [56]Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA, Kraus WE, Dohm GL: Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 2002, 51(4):901-909.
  • [57]Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya S, Guesnet P, Amri EZ, Negrel R, Ailhaud G: Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res 2003, 44(2):271-279.
  • [58]Savva SC, Chadjigeorgiou C, Hatzis C, Kyriakakis M, Tsimbinos G, Tornaritis M, Kafatos A: Association of adipose tissue arachidonic acid content with BMI and overweight status in children from Cyprus and Crete. Br J Nutr 2004, 91(4):643-649.
  • [59]Rawlings JS, Rosler KM, Harrison DA: The JAK/STAT signaling pathway. J Cell Sci 2004, 117(Pt 8):1281-1283.
  • [60]Aaronson DS, Horvath CM: A road map for those who don't know JAK-STAT. Science 2002, 296(5573):1653-1655.
  • [61]Sun L, Ma K, Wang H, Xiao F, Gao Y, Zhang W, Wang K, Gao X, Ip N, Wu Z: JAK1-STAT1-STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J Cell Biol 2007, 179(1):129-138.
  • [62]Trenerry MK, Della Gatta PA, Cameron-Smith D: JAK/STAT signaling and human in vitro myogenesis. BMC Physiol 2011, 11:6. BioMed Central Full Text
  • [63]Knurr T, Laara E, Sillanpaa MJ: Impact of prior specifications in ashrinkage-inducing Bayesian model for quantitative trait mapping and genomic prediction. Genet Sel Evol 2013, 45(1):24. BioMed Central Full Text
  文献评价指标  
  下载次数:12次 浏览次数:8次