期刊论文详细信息
BMC Genetics
SPE-8, a protein-tyrosine kinase, localizes to the spermatid cell membrane through interaction with other members of the SPE-8 group spermatid activation signaling pathway in C. elegans
Craig W LaMunyon1  Nicholas G Sullivan1  Ubaydah Nasri1  Jessica N Clark1  Paul J Muhlrad2 
[1] Department of Biological Science, California State Polytechnic University, 3801 W. Temple Ave, Pomona, CA 91768, USA;Department of Molecular, Cellular and Developmental Biology, Currently, University of Colorado Boulder, 347 UCB, Boulder, CO 80309, USA
关键词: Signal transduction;    spe-8;    Sperm activation;    Spermatogenesis;    Caenorhabditis elegans;   
Others  :  863135
DOI  :  10.1186/1471-2156-15-83
 received in 2014-04-09, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

The SPE-8 group gene products transduce the signal for spermatid activation initiated by extracellular zinc in C. elegans. Mutations in the spe-8 group genes result in hermaphrodite-derived spermatids that cannot activate to crawling spermatozoa, although spermatids from mutant males activate through a pathway induced by extracellular TRY-5 protease present in male seminal fluid.

Results

Here, we identify SPE-8 as a member of a large family of sperm-expressed non-receptor-like protein-tyrosine kinases. A rescuing SPE-8::GFP translational fusion reporter localizes to the plasma membrane in all spermatogenic cells from the primary spermatocyte stage through spermatids. Once spermatids become activated to spermatozoa, the reporter moves from the plasma membrane to the cytoplasm. Mutations in the spe-8 group genes spe-12, spe-19, and spe-27 disrupt localization of the reporter to the plasma membrane, while localization appears near normal in a spe-29 mutant background.

Conclusions

These results suggest that the SPE-8 group proteins form a functional complex localized at the plasma membrane, and that SPE-8 is correctly positioned only when all members of the SPE-8 group are present, with the possible exception of SPE-29. Further, SPE-8 is released from the membrane when the activation signal is transduced into the spermatid.

【 授权许可】

   
2014 Muhlrad et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725025458651.pdf 2200KB PDF download
119KB Image download
120KB Image download
38KB Image download
97KB Image download
220KB Image download
74KB Image download
【 图 表 】

【 参考文献 】
  • [1]Ellis RE, Stanfield GM: The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014, 29C:17-30.
  • [2]Liu Z, Chen L, Shang Y, Huang P, Miao L: The micronutrient element zinc modulates sperm activation through the SPE-8 pathway in Caenorhabditis elegans. Development 2013, 140(10):2103-2107.
  • [3]Smith JR, Stanfield GM: TRY-5 is a sperm-activating protease in Caenorhabditis elegans seminal fluid. PLoS Genet 2011, 7(11):e1002375.
  • [4]L'Hernault SW, Shakes DC, Ward S: Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics 1988, 120(2):435-452.
  • [5]Geldziler B, Chatterjee I, Singson A: The genetic and molecular analysis of spe-19, a gene required for sperm activation in Caenorhabditis elegans. Dev Biol 2005, 283(2):424-436.
  • [6]Nance J, Davis EB, Ward S: spe-29 encodes a small predicted membrane protein required for the initiation of sperm activation in Caenorhabditis elegans. Genetics 2000, 156(4):1623-1633.
  • [7]Nance J, Minniti AN, Sadler C, Ward S: spe-12 encodes a sperm cell surface protein that promotes spermiogenesis in Caenorhabditis elegans. Genetics 1999, 152(1):209-220.
  • [8]Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR: MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 1996, 87(2):205-216.
  • [9]Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJ, Davis EB, Scherer S, Ward S, Kim SK: A global profile of germline gene expression in C. elegans. Mol Cell 2000, 6(3):605-616.
  • [10]Reinke V, Gil IS, Ward S, Kazmer K: Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 2004, 131(2):311-323.
  • [11]Zhang Y, Skolnick J: TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005, 33(7):2302-2309.
  • [12]Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010, 5(4):725-738.
  • [13]Sawyer TK: Src homology-2 domains: structure, mechanisms, and drug discovery. Biopolymers 1998, 47(3):243-261.
  • [14]Craig AW: FES/FER kinase signaling in hematopoietic cells and leukemias. Front Biosci 2012, 17:861-875.
  • [15]Smithgall TE, Rogers JA, Peters KL, Li J, Briggs SD, Lionberger JM, Cheng H, Shibata A, Scholtz B, Schreiner S, Dunham N: The c-Fes family of protein-tyrosine kinases. Crit Rev Oncog 1998, 9(1):43-62.
  • [16]Ma X, Zhu Y, Li C, Xue P, Zhao Y, Chen S, Yang F, Miao L: Characterisation of Caenorhabditis elegans sperm transcriptome and proteome. BMC Genomics 2014, 15:168.
  • [17]Miller MA, Cutter AD, Yamamoto I, Ward S, Greenstein D, Dunham N: Clustered organization of reproductive genes in the C elegans genome. Curr Biol 2004, 14(14):1284-1290.
  • [18]Xu W, Harrison SC, Eck MJ: Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997, 385(6617):595-602.
  • [19]Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G, Kuriyan J: Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Mol Cell 2006, 21(6):787-798.
  • [20]Birge RB, Knudsen BS, Besser D, Hanafusa H: SH2 and SH3-containing adaptor proteins: redundant or independent mediators of intracellular signal transduction. Genes Cells 1996, 1(7):595-613.
  • [21]Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM: Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 2008, 40(11):1375-1383.
  • [22]Ward S: The asymmetric localization of gene products during the development of Caenorhabditis elegans spermatozoa. In Gametogenesis and the Early Embryo. Edited by Gall J. New York: A.R. Liss; 1986:55-75.
  • [23]Ward S, Hogan E, Nelson GA: The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev Biol 1983, 98(1):70-79.
  • [24]Hubbard SR, Till JH: Protein tyrosine kinase structure and function. Annu Rev Biochem 2000, 69:373-398.
  • [25]Zhang S, Chitu V, Stanley ER, Elliott BE, Greer PA: Fes tyrosine kinase expression in the tumor niche correlates with enhanced tumor growth, angiogenesis, circulating tumor cells, metastasis, and infiltrating macrophages. Cancer Res 2011, 71(4):1465-1473.
  • [26]Kim L, Wong TW: The cytoplasmic tyrosine kinase FER is associated with the catenin-like substrate pp 120 and is activated by growth factors. Mol Cell Biol 1995, 15(8):4553-4561.
  • [27]Allard P, Zoubeidi A, Nguyen LT, Tessier S, Tanguay S, Chevrette M, Aprikian A, Chevalier S: Links between Fer tyrosine kinase expression levels and prostate cell proliferation. Mol Cell Endocrinol 2000, 159(1–2):63-77.
  • [28]Zoubeidi A, Rocha J, Zouanat FZ, Hamel L, Scarlata E, Aprikian AG, Chevalier S: The Fer tyrosine kinase cooperates with interleukin-6 to activate signal transducer and activator of transcription 3 and promote human prostate cancer cell growth. Mol Cancer Res 2009, 7(1):142-155.
  • [29]Yoneyama T, Angata K, Bao X, Courtneidge S, Chanda SK, Fukuda M: Fer kinase regulates cell migration through alpha-dystroglycan glycosylation. Mol Biol Cell 2012, 23(5):771-780.
  • [30]Itoh T, Hasegawa J, Tsujita K, Kanaho Y, Takenawa T: The tyrosine kinase Fer is a downstream target of the PLD-PA pathway that regulates cell migration. Sci Signal 2009, 2(87):ra52.
  • [31]McGinnis LK, Carroll DJ, Kinsey WH: Protein tyrosine kinase signaling during oocyte maturation and fertilization. Mol Reprod Dev 2011, 78(10–11):831-845.
  • [32]Li H, Ren Z, Kang X, Zhang L, Li X, Wang Y, Xue T, Shen Y, Liu Y: Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells. BMC Cancer 2009, 9:366.
  • [33]Ivanova IA, Vermeulen JF, Ercan C, Houthuijzen JM, Saig FA, Vlug EJ, van der Wall E, van Diest PJ, Vooijs M, Derksen PW: FER kinase promotes breast cancer metastasis by regulating alpha6- and beta1-integrin-dependent cell adhesion and anoikis resistance. Oncogene 2013, 32(50):5582-5592.
  • [34]Rocha J, Zouanat FZ, Zoubeidi A, Hamel L, Benidir T, Scarlata E, Brimo F, Aprikian A, Chevalier S: The Fer tyrosine kinase acts as a downstream interleukin-6 effector of androgen receptor activation in prostate cancer. Mol Cell Endocrinol 2013, 381(1–2):140-149.
  • [35]Kierszenbaum AL, Rivkin E, Tres LL: Expression of Fer testis (FerT) tyrosine kinase transcript variants and distribution sites of FerT during the development of the acrosome-acroplaxome-manchette complex in rat spermatids. Dev Dyn 2008, 237(12):3882-3891.
  • [36]Bernacchi S, Mercenne G, Tournaire C, Marquet R, Paillart JC: Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids Res 2011, 39(6):2404-2415.
  • [37]Ren X, Hurley JH: Proline-rich regions and motifs in trafficking: from ESCRT interaction to viral exploitation. Traffic 2011, 12(10):1282-1290.
  • [38]Minniti AN, Sadler C, Ward S: Genetic and molecular analysis of spe-27, a gene required for spermiogenesis in Caenorhabditis elegans hermaphrodites. Genetics 1996, 143:213-223.
  • [39]Muhlrad PJ, Ward S: Spermiogenesis Initiation in Caenorhabditis elegans Involves a Casein Kinase 1 Encoded by the spe-6 Gene. Genetics 2002, 161(1):143-155.
  • [40]Blom N, Gammeltoft S, Brunak S: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999, 294(5):1351-1362.
  • [41]LeClaire LL 3rd, Stewart M, Roberts TM: A 48 kDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. J Cell Sci 2003, 116(Pt 13):2655-2663.
  • [42]Yi K, Buttery SM, Stewart M, Roberts TM: A Ser/Thr kinase required for membrane-associated assembly of the major sperm protein motility apparatus in the amoeboid sperm of Ascaris. Mol Biol Cell 2007, 18(5):1816-1825.
  • [43]Gort EH, van Haaften G, Verlaan I, Groot AJ, Plasterk RH, Shvarts A, Suijkerbuijk KP, van Laar T, van der Wall E, Raman V, Van Diest PJ, Tijsterman M, Vooijs M: The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene 2008, 27(11):1501-1510.
  • [44]Haase H, Rink L: Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 2009, 29:133-152.
  • [45]Kim S, Jung Y, Kim D, Koh H, Chung J: Extracellular zinc activates p70 S6 kinase through the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem 2000, 275(34):25979-25984.
  • [46]Brenner S: The genetics of Caenorhabditis elegans. Genetics 1974, 77:71-94.
  • [47]Liau WS, Nasri U, Elmatari D, Rothman J, LaMunyon CW: Premature sperm activation and defective spermatogenesis caused by loss of spe-46 function in Caenorhabditis elegans. PloS One 2013, 8(3):e57266.
  • [48]Hobert O: PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 2002, 32(4):728-730.
  文献评价指标  
  下载次数:38次 浏览次数:8次