期刊论文详细信息
BMC Cell Biology
Integrin-mediated internalization of Staphylococcus aureus does not require vinculin
Christof R Hauck3  Wolfgang H Ziegler1  Susanne Wörner2  Alexander Buntru3  Yong Shi2  Marina Borisova2 
[1] Hannover Medical School, Dept. of Paediatric Kidney, Liver and Metabolic Diseases, 30625, Hannover, Germany;Lehrstuhl Zellbiologie, Universität Konstanz, Postfach X908, 78457, Konstanz, Germany;Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
关键词: Vinculin;    Integrin;    Host cell invasion;    Fibronectin;    Endocytosis;    Bacterial adhesion;    Staphylococcus aureus;   
Others  :  856615
DOI  :  10.1186/1471-2121-14-2
 received in 2012-07-12, accepted in 2012-12-21,  发布年份 2013
PDF
【 摘 要 】

Background

Disease manifestations of Staphylococcus aureus are connected to the fibronectin (Fn)-binding capacity of these Gram-positive pathogens. Fn deposition on the surface of S. aureus allows engagement of α5β1 integrins and triggers uptake by host cells. For several integrin- and actin-associated cytoplasmic proteins, including FAK, Src, N-WASP, tensin and cortactin, a functional role during bacterial invasion has been demonstrated. As reorganization of the actin cytoskeleton is critical for bacterial entry, we investigated whether vinculin, an essential protein linking integrins with the actin cytoskeleton, may contribute to the integrin-mediated internalization of S. aureus.

Results

Complementation of vinculin in vinculin -/- cells, vinculin overexpression, as well as shRNA-mediated vinculin knock-down in different eukaryotic cell types demonstrate, that vinculin does not have a functional role during the integrin-mediated uptake of S. aureus.

Conclusions

Our results suggest that vinculin is insignificant for the integrin-mediated uptake of S. aureus despite the critical role of vinculin as a linker between integrins and F-actin.

【 授权许可】

   
2013 Borisova et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723034643221.pdf 1675KB PDF download
47KB Image download
74KB Image download
60KB Image download
48KB Image download
100KB Image download
【 图 表 】

【 参考文献 】
  • [1]Lowy FD: Staphylococcus aureus infections. N Engl J Med 1998, 339(8):520-532.
  • [2]Henderson B, Nair S, Pallas J, Williams MA: Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 2011, 35(1):147-200.
  • [3]Hauck CR, Ohlsen K: Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol 2006, 9(1):5-11.
  • [4]Schwarz-Linek U, Hook M, Potts JR: The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 2004, 52(3):631-641.
  • [5]Sinha B, Francois PP, Nusse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew DP, Herrmann M, Krause KH: Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1999, 1(2):101-117.
  • [6]Fowler T, Wann ER, Joh D, Johansson S, Foster TJ, Hook M: Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. Eur J Cell Biol 2000, 79(10):672-679.
  • [7]Dziewanowska K, Patti JM, Deobald CF, Bayles KW, Trumble WR, Bohach GA: Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun 1999, 67(9):4673-4678.
  • [8]Massey RC, Kantzanou MN, Fowler T, Day NP, Schofield K, Wann ER, Berendt AR, Hook M, Peacock SJ: Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cell Microbiol 2001, 3(12):839-851.
  • [9]Jett BD, Gilmore MS: Internalization of Staphylococcus aureus by human corneal epithelial cells: role of bacterial fibronectin-binding protein and host cell factors. Infect Immun 2002, 70(8):4697-4700.
  • [10]Agerer F, Michel A, Ohlsen K, Hauck CR: Integrin-mediated invasion of Staphylococcus aureus into human cells requires Src family protein tyrosine kinases. J Biol Chem 2003, 278(43):42524-42531.
  • [11]Kuypers JM, Proctor RA: Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect Immun 1989, 57(8):2306-2312.
  • [12]Brouillette E, Talbot BG, Malouin F: The fibronectin-binding proteins of Staphylococcus aureus may promote mammary gland colonization in a lactating mouse model of mastitis. Infect Immun 2003, 71(4):2292-2295.
  • [13]Que YA, Haefliger JA, Piroth L, Francois P, Widmer E, Entenza JM, Sinha B, Herrmann M, Francioli P, Vaudaux P, et al.: Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 2005, 201(10):1627-1635.
  • [14]Menzies BE: The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr Opin Infect Dis 2003, 16(3):225-229.
  • [15]Agerer F, Lux S, Michel A, Rohde M, Ohlsen K, Hauck CR: Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J Cell Sci 2005, 118(10):2189-2200.
  • [16]Schroder A, Schroder B, Roppenser B, Linder S, Sinha B, Fassler R, Aepfelbacher M: Staphylococcus aureus fibronectin binding protein-a induces motile attachment sites and complex actin remodeling in living endothelial Cells. Mol Biol Cell 2006, 17(12):5198-5210.
  • [17]Fowler T, Johansson S, Wary KK, Hook M: Src kinase has a central role in in vitro cellular internalization of Staphylococcus aureus. Cell Microbiol 2003, 5(6):417-426.
  • [18]Ziegler WH, Liddington RC, Critchley DR: The structure and regulation of vinculin. Trends Cell Biol 2006, 16(9):453-460.
  • [19]Geiger B, Spatz JP, Bershadsky AD: Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009, 10(1):21-33.
  • [20]Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC: Structural basis for vinculin activation at sites of cell adhesion. Nature 2004, 430(6999):583-586.
  • [21]Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C: Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 2007, 179(5):1043-1057.
  • [22]DeMali KA, Barlow CA, Burridge K: Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 2002, 159(5):881-891.
  • [23]Le Clainche C, Dwivedi SP, Didry D, Carlier MF: Vinculin is a dually regulated actin filament barbed end-capping and side-binding protein. J Biol Chem 2010, 285(30):23420-23432.
  • [24]Bourdet-Sicard R, Rudiger M, Jockusch BM, Gounon P, Sansonetti PJ, Nhieu GT: Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J 1999, 18(21):5853-5862.
  • [25]Tran Van Nhieu G, Ben-Ze'ev A, Sansonetti PJ: Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J 1997, 16:2717-2729.
  • [26]Mierke CT, Kollmannsberger P, Zitterbart DP, Diez G, Koch TM, Marg S, Ziegler WH, Goldmann WH, Fabry B: Vinculin facilitates cell invasion into three-dimensional collagen matrices. J Biol Chem 2010, 285(17):13121-13130.
  • [27]Xu W, Coll JL, Adamson ED: Rescue of the mutant phenotype by reexpression of full-length vinculin in null F9 cells; effects on cell locomotion by domain deleted vinculin. J Cell Sci 1998, 111(Pt 11):1535-1544.
  • [28]Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR: Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol 2006, 85(6):487-500.
  • [29]Heesemann J, Laufs R: Double immunofluorescence microscopic technique for accurate differentiation of extracellularly and intracellularly located bacteria in cell culture. J Clin Microbiol 1985, 22:168-175.
  • [30]Agerer F, Waeckerle S, Hauck CR: Microscopic quantification of bacterial invasion by a novel antibody-independent staining method. J Microbiol Meth 2004, 59(1):23-32.
  • [31]Ziegler WH, Gingras AR, Critchley DR, Emsley J: Integrin connections to the cytoskeleton through talin and vinculin. Biochem Soc Trans 2008, 36(Pt 2):235-239.
  • [32]Lahmann I, Fabienke M, Henneberg B, Pabst O, Vauti F, Minge D, Illenberger S, Jockusch BM, Korte M, Arnold HH: The hnRNP and cytoskeletal protein raver1 contributes to synaptic plasticity. Exp Cell Res 2008, 314(5):1048-1060.
  • [33]Truttmann MC, Misselwitz B, Huser S, Hardt WD, Critchley DR, Dehio C: Bartonella henselae engages inside-out and outside-in signaling by integrin beta1 and talin1 during invasome-mediated bacterial uptake. J Cell Sci 2011, 124(Pt 21):3591-3602.
  • [34]Izard T, Tran Van Nhieu G, Bois PR: Shigella applies molecular mimicry to subvert vinculin and invade host cells. J Cell Biol 2006, 175(3):465-475.
  • [35]Park H, Valencia-Gallardo C, Sharff A, Tran Van Nhieu G, Izard T: Novel vinculin binding site of the IpaA invasin of Shigella. J Biol Chem 2011, 286(26):23214-23221.
  • [36]Gingras AR, Ziegler WH, Frank R, Barsukov IL, Roberts GC, Critchley DR, Emsley J: Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J Biol Chem 2005, 280(44):37217-37224.
  • [37]Hamiaux C, van Eerde A, Parsot C, Broos J, Dijkstra BW: Structural mimicry for vinculin activation by IpaA, a virulence factor of Shigella flexneri. EMBO Rep 2006, 7(8):794-799.
  • [38]Ramarao N, Le Clainche C, Izard T, Bourdet-Sicard R, Ageron E, Sansonetti PJ, Carlier MF, Tran Van Nhieu G: Capping of actin filaments by vinculin activated by the Shigella IpaA carboxyl-terminal domain. FEBS Lett 2007, 581(5):853-857.
  • [39]Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, Konig W, et al.: Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007, 449(7164):862-866.
  • [40]Backert S, Selbach M: Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 2008, 10(8):1573-1581.
  • [41]Selbach M, Moese S, Hauck CR, Meyer TF, Backert S: Src Is the Kinase of the Helicobacter pylori CagA Protein in Vitro and in Vivo. J Biol Chem 2002, 277(9):6775-6778.
  • [42]Selbach M, Moese S, Hauck CR, Meyer TF, Backert S: The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangements by c-Src inactivation. EMBO J 2003, 22:515-528.
  • [43]Moese S, Selbach M, Brinkmann V, Karlas A, Haimovich B, Backert S, Meyer TF: The Helicobacter pylori CagA protein disrupts matrix adhesion of gastric epithelial cells by dephosphorylation of vinculin. Cell Microbiol 2007, 9(5):1148-1161.
  • [44]Wu H, Parsons JT: Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 1993, 120(6):1417-1426.
  • [45]Wang W, Liu Y, Liao K: Tyrosine phosphorylation of cortactin by the FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biol 2011, 12:49. BioMed Central Full Text
  • [46]Tegtmeyer N, Wittelsberger R, Hartig R, Wessler S, Martinez-Quiles N, Backert S: Serine phosphorylation of cortactin controls focal adhesion kinase activity and cell scattering induced by Helicobacter pylori. Cell Host Microbe 2011, 9(6):520-531.
  • [47]Weaver AM, Heuser JE, Karginov AV, Lee WL, Parsons JT, Cooper JA: Interaction of cortactin and N-WASp with Arp2/3 complex. Curr Biol 2002, 12(15):1270-1278.
  • [48]Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons JT: Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex [In Process Citation]. J Cell Biol 2000, 151(1):29-40.
  • [49]Xu W, Baribault H, Adamson ED: Vinculin knockout results in heart and brain defects during embryonic development. Development 1998, 125(2):327-337.
  • [50]Chandrasekar I, Stradal TE, Holt MR, Entschladen F, Jockusch BM, Ziegler WH: Vinculin acts as a sensor in lipid regulation of adhesion-site turnover. J Cell Sci 2005, 118(Pt 7):1461-1472.
  • [51]Schmitter T, Agerer F, Peterson L, Muenzner P, Hauck CR: Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. J Exp Med 2004, 199:35-46.
  • [52]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔ C(T)) Method. Methods 2001, 25(4):402-408.
  文献评价指标  
  下载次数:22次 浏览次数:12次