期刊论文详细信息
BMC Genomics
Dynamics of the chili pepper transcriptome during fruit development
Octavio Martínez2  Neftalí Ochoa-Alejo1  Luis A Martínez-López3 
[1] Departamento de Biotecnología y Bioquímica, Unidad de Biotecnología e Ingeniería Genética, Centro de Investigacíon y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-Unidad Irapuato), 36821 Irapuato, Guanajuato, México;Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), 36821 Irapuato, Guanajuato, México;Departamento de Ingeniería Genética de Plantas, Unidad de Biotecnología e Ingeniería Genética, Centro de Investigacíon y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-Unidad Irapuato), 36821 Irapuato, Guanajuato, México
关键词: Illumina MiSeq;    Pathway analysis;    High-throughput sequencing;    RNA-Seq;    Gene expression;    Fruit ripening;    Fruit development;    Transcriptome;    Chili pepper;    Capsicum;   
Others  :  1217853
DOI  :  10.1186/1471-2164-15-143
 received in 2013-10-18, accepted in 2014-02-18,  发布年份 2014
PDF
【 摘 要 】

Background

The set of all mRNA molecules present in a cell constitute the transcriptome. The transcriptome varies depending on cell type as well as in response to internal and external stimuli during development. Here we present a study of the changes that occur in the transcriptome of chili pepper fruit during development and ripening.

Results

RNA-Seq was used to obtain transcriptomes of whole Serrano-type chili pepper fruits (Capsicum annuum L.; ‘Tampiqueño 74’) collected at 10, 20, 40 and 60 days after anthesis (DAA). 15,550,468 Illumina MiSeq reads were assembled de novo into 34,066 chili genes. We classified the expression patterns of individual genes as well as genes grouped into Biological Process ontologies and Metabolic Pathway categories using statistical criteria. For the analyses of gene groups we added the weighted expression of individual genes. This method was effective in interpreting general patterns of expression changes and increased the statistical power of the analyses. We also estimated the variation in diversity and specialization of the transcriptome during chili pepper development. Approximately 17% of genes exhibited a significant change of expression in at least one of the intervals sampled. In contrast, significant differences in approximately 63% of the Biological Processes and 80% of the Metabolic Pathways studied were detected in at least one interval. Confirming previous reports, genes related to capsaicinoid and ascorbic acid biosynthesis were significantly upregulated at 20 DAA while those related to carotenoid biosynthesis were highly expressed in the last period of fruit maturation (40–60 DAA). Our RNA-Seq data was validated by examining the expression of nine genes involved in carotenoid biosynthesis by qRT-PCR.

Conclusions

In general, more profound changes in the chili fruit transcriptome were observed in the intervals between 10 to 20 and 40 to 60 DAA. The last interval, between 40 to 60 DAA, included 49% of all significant changes detected, and was characterized predominantly by a global decrease in gene expression. This period signals the end of maturation and the beginning of senescence of chili pepper fruit. The transcriptome at 60 DAA was the most specialized and least diverse of the four states sampled.

【 授权许可】

   
2014 Martínez-López et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708221050463.pdf 1194KB PDF download
Figure 6. 89KB Image download
Figure 5. 49KB Image download
Figure 4. 51KB Image download
Figure 3. 57KB Image download
Figure 2. 42KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM: Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature methods 2008, 5(7):613-619.
  • [2]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
  • [3]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson Da, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.
  • [4]Auer PL, Doerge R: Statistical design and analysis of RNA sequencing data. Genetics 2010, 185(2):405-416.
  • [5]Ekblom R, Galindo J: Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 2010, 107:1-15.
  • [6]Mochida K, Shinozaki K: Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 2011, 52(12):2017-2038.
  • [7]Hudson NJ, Dalrymple BP, Reverter A: Beyond differential expression the quest for causal mutations and effector molecules. BMC Genomics 2012, 13:356. BioMed Central Full Text
  • [8]Ochoa-Alejo N, Ramírez-Malagón R: In vitro chili pepper biotechnology. In Vitro Cell Dev Biol-Plant 2001, 37(6):701-729.
  • [9]Aza-González C, Núñez-Palenius HG, Ochoa-Alejo N: Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum, spp.). Plant Cell Rep 2011, 30(5):695-706.
  • [10]Aza-González C, Núñez-Palenius HG, Ochoa-Alejo N: Molecular biology of chili pepper anthocyanin biosynthesis. J Mexican Chem Soc 2012, 56:93-98.
  • [11]Kim HJ, Baek KH, Lee SW, Kim J, Lee BW, Cho HS, Kim WT, Choi D, Hur CG: Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome. BMC Plant Biol 2008, 8:101. BioMed Central Full Text
  • [12]Liu S, Chen C, Chen G, Cao B, Chen Q, Lei J: RNA-sequencing tag profiling of the placenta and pericarp of pungent pepper provides robust candidates contributing to capsaicinoid biosynthesis. Plant Cell, Tissue Organ Culture (PCTOC) 2012, 110:111-121.
  • [13]Liu S, Li W, Wu Y, Chen C, Lei J: De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PloS one 2013, 8:e48156.
  • [14]Lu FH, Cho MC, Park YJ: Transcriptome profiling and molecular marker discovery in red pepper,Capsicum annuum L. TF68. Mol Biol Rep 2012, 39(3):3327-3335.
  • [15]Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J, Chin-Wo SR, Van Deynze A: De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 2012, 13:571. BioMed Central Full Text
  • [16]Góngora-Castillo E, Fajardo-Jaime R, Fernández-Cortes A, Jofre-Garfias AE, Lozoya-Gloria E, Martínez O, Ochoa-Alejo N, Rivera-Bustamante R: The capsicum transcriptome DB: a hot tool for genomic research. Bioinformation 2012, 8:43.
  • [17]Lee S, Kim SY, Chung E, Joung YH, Pai HS, Hur CG, Choi D: EST and microarray analyses of pathogen-responsive genes in hot pepper (Capsicum annuum) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Funct Integr Genomics 2004, 4(3):196-205.
  • [18]Lee S, Yun SC: The ozone stress transcriptome of pepper (Capsicum annuum L.). Mol Cells 2006, 21(2):197.
  • [19]Góngora-Castillo E, Ibarra-Laclette E, Trejo-Saavedra DL, Rivera-Bustamante RF: Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum). Virol J 2012, 9:295. BioMed Central Full Text
  • [20]Lee S, Choi D: Comparative transcriptome analysis of pepper (Capsicum annuum) revealed common regulons in multiple stress conditions and hormone treatments. Plant Cell Rep 2013, 32(9):1351-1359.
  • [21]Abraham-Juárez M, Rocha-Granados M, López MG, Rivera-Bustamante RF, Ochoa-Alejo N: Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 2008, 227(3):681-695.
  • [22]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.
  • [23]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [24]Kuznetsov Va, Knott GD, Bonner RF: General statistics of stochastic process of gene expression in eukaryotic cells. Genetics 2002, 161(3):1321-1332.
  • [25]Good IJ: The population frequencies of species and the estimation of population parameters. Biometrika 1953, 40(3):237-264.
  • [26]Chao A, Lee SM: Estimating the number of classes via sample coverage. J Am Stat Assoc 1992, 87:210-217.
  • [27]Changjiang X, Luzhou X, Fahong Y, Weihong T, Leonid L, Jian L: Nonparametric estimation of the number of unique sequences in biological samples. IEEE Trans Signal Process 2006, 54(10):3759-3767.
  • [28]Robinson M, McCarthy D, Smyth G: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
  • [29]The Arabidopsis Information Resource [http://arabidopsis.org webcite]
  • [30]The Tomato Genome Consortium: The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485(7400):635-641.
  • [31]R Core Team: R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2012. [http://www.R-project.org/ webcite] [ISBN 3-900051-07-0]
  • [32]Robinson MD, Smyth GK: Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 2008, 9:321-332.
  • [33]Storey JD, Tibshirani R: Statistical significance for genomewide experiments. Proc Natl Acad Sci 2003, 100:9440-9445.
  • [34]Miedes E, Lorences EP: Xyloglucan endotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening. J Plant Physiol 2009, 166(5):489-498.
  • [35]Cenik ES, Zamore PD: Argonaute proteins. Current Biol 2011, 21(12):R446-R449.
  • [36]González-Álvarez DL, Vega-Rodríguez MA: Analysing the scalability of multiobjective evolutionary algorithms when solving the motif discovery problem. J Glob Optimization 2013, 57(2):467-497.
  • [37]Martínez O, Reyes-Valdés MH: Defining diversity, specialization, and gene specificity in transcriptomes through information theory. Proc Natl Acad Sci USA 2008, 105(28):9709-9714.
  • [38]Khatri P, Sirota M, Butte AJ: Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 2012, 8(2):e1002375.
  • [39]Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J, Martinez-Antonio A, Collado-Vides J: RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 2006, 34(suppl 1):D394-D397.
  • [40]Väremo L, Nielsen J, Nookaew I: Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 2013, 41(8):4378-4391.
  • [41]The Gene Ontology [http://www.geneontology.org/ webcite]
  • [42]Kyoto Encyclopedia of Genes and Genomes [http://www.genome.jp/kegg/ webcite]
  • [43]Aizat WM, Dias DA, Stangoulis JC, Able JA, Roessner U, Able AJ: Metabolomics of capsicum ripening reveals modification of the ethylene related-pathway and carbon metabolism. Postharvest Biol Technol 2014, 89:19-31.
  • [44]Sukrasno N, Yeoman M: Phenylpropanoid metabolism during growth and development ofCapsicum frutescens fruits. Phytochemistry 1993, 32(4):839-844.
  • [45]Salgado-Garciglia R, Ochoa-Alejo N: Increased capsaicin content in PFP-resistant cells of chili pepper (Capsicum annuum L.). Plant Cell Rep 1990, 8(10):617-620.
  • [46]Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA: Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnol J 2012, 10(4):390-397.
  • [47]Alós E, Rodrigo MJ, Zacarías L: Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of L-ascorbic acid in pepper fruits (Capsicum annuum L.). Plant Sci 2013, 207:2-11.
  • [48]Gómez-García MR, Ochoa-Alejo N: Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int J Mol Sci 2013, 14:19025-19053.
  • [49]Romer S, Hugueney P, Bouvier F, Camara B, Kuntz M: Expression of the genes encoding the early carotenoid biosynthetic-enzymes inCapsicum annuum. Biochem Biophys Res Commun 1993, 196(3):1414-1421.
  • [50]Ha SH, Kim JB, Park JS, Lee SW, Cho KJ: A comparison of the carotenoid accumulation inCapsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J Exp Bot 2007, 58(12):3135-3144.
  • [51]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 2001, 25(4):402-408.
  • [52]Data Intensive Academic Grid (DIAG) [http://diagcomputing.org/ webcite]
  • [53]Li B, Dewey C: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12:323. BioMed Central Full Text
  • [54]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [55]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35(suppl 2):W182-W185.
  • [56]GenBank [http://www.ncbi.nlm.nih.gov/genbank/ webcite]
  • [57]Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA: Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 2007, 35(suppl 2):W71-W74.
  文献评价指标  
  下载次数:82次 浏览次数:32次