期刊论文详细信息
BMC Genomics
A novel termini analysis theory using HTS data alone for the identification of Enterococcus phage EF4-like genome termini
Yigang Tong1  Yubao Chen2  Wei Wang1  Zhiyi Zhang1  Zhiqiang Mi1  Hang Fan1  Yong Huang1  Guangqian Pei1  Xiaoping An1  Shasha Li1  Yahui Wang3  Xianglilan Zhang1 
[1]State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
[2]Beijing Computing Center, Beijing 100094, P.R. China
[3]School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China
关键词: Genome termini;    Phage;    Antibiotic-resistant Enterococcus;    Termini analysis theory;   
Others  :  1208965
DOI  :  10.1186/s12864-015-1612-3
 received in 2014-07-04, accepted in 2015-05-04,  发布年份 2015
PDF
【 摘 要 】

Background

Enterococcus faecalis and Enterococcus faecium are typical enterococcal bacterial pathogens. Antibiotic resistance means that the identification of novel E. faecalis and E. faecium phages against antibiotic-resistant Enterococcus have an important impact on public health. In this study, the E. faecalis phage IME-EF4, E. faecium phage IME-EFm1, and both their hosts were antibiotic resistant. To characterize the genome termini of these two phages, a termini analysis theory was developed to provide a wealth of terminal sequence information directly, using only high-throughput sequencing (HTS) read frequency statistics.

Results

The complete genome sequences of phages IME-EF4 and IME-EFm1 were determined, and our termini analysis theory was used to determine the genome termini of these two phages. Results showed 9 bp 3′ protruding cohesive ends in both IME-EF4 and IME-EFm1 genomes by analyzing frequencies of HTS reads. For the positive strands of their genomes, the 9 nt 3′ protruding cohesive ends are 5′-TCATCACCG-3′ (IME-EF4) and 5′-GGGTCAGCG-3′ (IME-EFm1). Further experiments confirmed these results. These experiments included mega-primer polymerase chain reaction sequencing, terminal run-off sequencing, and adaptor ligation followed by run-off sequencing.

Conclusion

Using this termini analysis theory, the termini of two newly isolated antibiotic-resistant Enterococcus phages, IME-EF4 and IME-EFm1, were identified as the byproduct of HTS. Molecular biology experiments confirmed the identification. Because it does not require time-consuming wet lab termini analysis experiments, the termini analysis theory is a fast and easy means of identifying phage DNA genome termini using HTS read frequency statistics alone. It may aid understanding of phage DNA packaging.

【 授权许可】

   
2015 Zhang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150601023336932.pdf 2448KB PDF download
Fig. 10. 21KB Image download
Fig. 9. 19KB Image download
Fig. 8. 180KB Image download
Fig. 7. 52KB Image download
Fig. 6. 22KB Image download
Fig. 5. 164KB Image download
Fig. 4. 35KB Image download
Fig. 3. 48KB Image download
Fig. 2. 9KB Image download
Fig. 1. 16KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Fraser SL, Lim J, Donskey J, Salata R. Enterococcal Infections. Retrieved June. 2008; 12:2009.
  • [2]Moellering Jr RC. Emergence of Enterococcus as a significant pathogen. Clin Infect Dis. 1992;1173–1176.
  • [3]Edgeworth JD, Treacher DF, Eykyn SJ. A 25-year study of nosocomial bacteremia in an adult intensive care unit. Crit Care Med. 1999; 27(8):1421-8.
  • [4]Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000; 21(8):510-5.
  • [5]Megran DW. Enterococcal endocarditis. Clin Infect Dis. 1992; 15(1):63-71.
  • [6]Gerberding J, Gaynes R, Horan T, Abshire J, Alonso-Echanove J, Edwards J et al.. National nosocomial infections surveillance (NNIS) system report, data summary from January 1990-May 1999, issued June 1999. Am J Infect Control. 1999; 27(6):520-32.
  • [7]Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: Its Role in Root Canal Treatment Failure and Current Concepts in Retreatment. J Endod. 2006; 32(2):93-8.
  • [8]Rams T, Feik D, Young V, Hammond B, Slots J. Enterococci in human periodontitis. Oral Microbiol Immunol. 1992; 7(4):249-52.
  • [9]Bonten MJ, Willems R, Weinstein RA. Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis. 2001; 1(5):314-25.
  • [10]Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis. 2007; 58(2):163-70.
  • [11]Hoshuyama T, Moriguchi H, Muratani T, Matsumoto T. Vancomycin-resistant enterococci (VRE) outbreak at a university hospital in Kitakyushu, Japan: case-control studies. J Infect Chemother. 2008; 14(5):354-60.
  • [12]Stevens RH, Ektefaie MR, Fouts DE. The annotated complete DNA sequence of Enterococcus faecalis phage φEf11 and its comparison with all available phage and predicted prophage genomes. FEMS Microbiol Lett. 2011; 317(1):9-26.
  • [13]Fujisawa H, Morita M. Phage DNA packaging. Genes Cells. 1997; 2(9):537-45.
  • [14]Zaballos A, Mellado RP, Salas M. Initiation of phage φ 29 DNA replication by mutants with deletions at the amino end of the terminal protein. Gene. 1988; 63(1):113-21.
  • [15]Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME et al.. The Genome of Bacillus subtilis Phage SPO1. J Mol Biol. 2009; 388(1):48-70.
  • [16]Gilmour MW, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel KM et al.. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics. 2010; 11(1):120. BioMed Central Full Text
  • [17]Bannwarth L, Goldberg AB, Chen C, Turk BE. Identification of exosite-targeting inhibitors of anthrax lethal factor by high-throughput screening. Chem Biol. 2012; 19(7):875-82.
  • [18]Chen CG, Fabri LJ, Wilson MJ, Panousis C: One-step zero-background IgG reformatting of phage-displayed antibody fragments enabling rapid and high-throughput lead identification. Nucleic Acids Res. 2014;42(4):e26. doi:10.1093/nar/gkt1142.
  • [19]Li S, Fan H, An X, Fan H, Jiang H, Chen Y et al.. Scrutinizing Virus Genome Termini by High-Throughput Sequencing. Plos One. 2014; 9(1): Article ID e85806
  • [20]Adams MH. Phages. Interscience, New York; 1959.
  • [21]Sheng W, Huanhuan J, Jiankui C, Dabin L, Cun L, Bo P et al.. Isolation and rapid genetic characterization of a novel T4-like phage. J Med Coll PLA. 2010; 25(6):331-40.
  • [22]Joseph S, David WR: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 2001, 2.
  • [23]Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J et al.. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012; 30(5):434-9.
  • [24]Pennisi E. Semiconductors inspire new sequencing technologies. Science. 2010; 327(5970):1190-0.
  • [25]Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics. 2011; 38(3):95-109.
  • [26]Lu S, Le S, Tan Y, Zhu J, Li M, Rao X et al.. Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS One. 2013; 8(5):e62933.
  文献评价指标  
  下载次数:7次 浏览次数:7次