期刊论文详细信息
BMC Medical Genetics
Genome-Wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population
Joseph H Lee4  Lorraine N Clark4  Karen Marder1  Stanley Fahn8  Steven Frucht8  Blair Ford6  Cheryl Waters6  Howard Andrews3  Lucien J Cote7  Elan D Louis2  Helen Mejia-Sanatana7  Andrew Browne5  Sergey Kisselev5  Miguel Verbitsky8  Rong Cheng7  Xinmin Liu8 
[1] Department of Psychiatry, Columbia University Medical Center, NYC, NY, USA;Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA;New York State Psychiatric Institute, Data Coordinating Center, New York, NY, USA;Center for Human Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA;Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA;Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA;Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA;Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
关键词: candidate genes;    case-control study;    Ashkenazi Jews;    GWAS;    Parkinson's disease;   
Others  :  1178006
DOI  :  10.1186/1471-2350-12-104
 received in 2011-01-27, accepted in 2011-08-03,  发布年份 2011
PDF
【 摘 要 】

Background

To date, nine Parkinson disease (PD) genome-wide association studies in North American, European and Asian populations have been published. The majority of studies have confirmed the association of the previously identified genetic risk factors, SNCA and MAPT, and two studies have identified three new PD susceptibility loci/genes (PARK16, BST1 and HLA-DRB5). In a recent meta-analysis of datasets from five of the published PD GWAS an additional 6 novel candidate genes (SYT11, ACMSD, STK39, MCCC1/LAMP3, GAK and CCDC62/HIP1R) were identified. Collectively the associations identified in these GWAS account for only a small proportion of the estimated total heritability of PD suggesting that an 'unknown' component of the genetic architecture of PD remains to be identified.

Methods

We applied a GWAS approach to a relatively homogeneous Ashkenazi Jewish (AJ) population from New York to search for both 'rare' and 'common' genetic variants that confer risk of PD by examining any SNPs with allele frequencies exceeding 2%. We have focused on a genetic isolate, the AJ population, as a discovery dataset since this cohort has a higher sharing of genetic background and historically experienced a significant bottleneck. We also conducted a replication study using two publicly available datasets from dbGaP. The joint analysis dataset had a combined sample size of 2,050 cases and 1,836 controls.

Results

We identified the top 57 SNPs showing the strongest evidence of association in the AJ dataset (p < 9.9 × 10-5). Six SNPs located within gene regions had positive signals in at least one other independent dbGaP dataset: LOC100505836 (Chr3p24), LOC153328/SLC25A48 (Chr5q31.1), UNC13B (9p13.3), SLCO3A1(15q26.1), WNT3(17q21.3) and NSF (17q21.3). We also replicated published associations for the gene regions SNCA (Chr4q21; rs3775442, p = 0.037), PARK16 (Chr1q32.1; rs823114 (NUCKS1), p = 6.12 × 10-4), BST1 (Chr4p15; rs12502586, p = 0.027), STK39 (Chr2q24.3; rs3754775, p = 0.005), and LAMP3 (Chr3; rs12493050, p = 0.005) in addition to the two most common PD susceptibility genes in the AJ population LRRK2 (Chr12q12; rs34637584, p = 1.56 × 10-4) and GBA (Chr1q21; rs2990245, p = 0.015).

Conclusions

We have demonstrated the utility of the AJ dataset in PD candidate gene and SNP discovery both by replication in dbGaP datasets with a larger sample size and by replicating association of previously identified PD susceptibility genes. Our GWAS study has identified candidate gene regions for PD that are implicated in neuronal signalling and the dopamine pathway.

【 授权许可】

   
2011 Liu et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150504035806705.pdf 2706KB PDF download
Figure 6. 98KB Image download
Figure 5. 62KB Image download
Figure 4. 95KB Image download
Figure 3. 59KB Image download
Figure 2. 158KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL: Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997, 276(5321):2045-2047.
  • [2]Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392(6676):605-608.
  • [3]Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW: Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004, 304(5674):1158-1160.
  • [4]Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P: Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299(5604):256-259.
  • [5]Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB: Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 2004, 44(4):595-600.
  • [6]Lees AJ, Hardy J, Revesz T: Parkinson's disease. Lancet 2009, 373(9680):2055-2066.
  • [7]Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C: Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 2010, 31(7):763-780.
  • [8]Saad M, Lesage S, Saint-Pierre A, Corvol JC, Zelenika D, Lambert JC, Vidailhet M, Mellick GD, Lohmann E, Durif F, Pollak P, Damier P, Tison F, Silburn PA, Tzourio C, Forlani S, Loriot MA, Giroud M, Helmer C, Portet F, Amouyel P, Lathrop M, Elbaz A, Durr A, Martinez M, Brice A: Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population. Hum Mol Genet 2011, 20(3):615-627.
  • [9]Spencer CC, Plagnol V, Strange A, Gardner M, Paisan-Ruiz C, Band G, Barker RA, Bellenguez C, Bhatia K, Blackburn H, Blackwell JM, Bramon E, Brown MA, Burn D, Casas JP, Chinnery PF, Clarke CE, Corvin A, Craddock N, Deloukas P, Edkins S, Evans J, Freeman C, Gray E, Hardy J, Hudson G, Hunt S, Jankowski J, Langford C, Lees AJ, et al.: Dissection of the genetics of Parkinson's disease identifies an additional association 5' of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet 2011, 20(2):345-353.
  • [10]Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA, Pant PV, Frazer KA, Cox DR, Ballinger DG: High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 2005, 77(5):685-693.
  • [11]Fung HC, Scholz S, Matarin M, Simon-Sanchez J, Hernandez D, Britton A, Gibbs JR, Langefeld C, Stiegert ML, Schymick J, Okun MS, Mandel RJ, Fernandez HH, Foote KD, Rodriguez RL, Peckham E, De Vrieze FW, Gwinn-Hardy K, Hardy JA, Singleton A: Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 2006, 5(11):911-916.
  • [12]Latourelle JC, Pankratz N, Dumitriu A, Wilk JB, Goldwurm S, Pezzoli G, Mariani CB, DeStefano AL, Halter C, Gusella JF, Nichols WC, Myers RH, Foroud T: Genomewide association study for onset age in Parkinson disease. BMC Med Genet 2009, 10:98. BioMed Central Full Text
  • [13]Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y, Toda T: Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 2009, 41(12):1303-1307.
  • [14]Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, et al.: Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 2009, 41(12):1308-1312.
  • [15]Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Zuchner S, Konidari I, Wang G, Singer C, Nahab F, Scott B, Stajich JM, Pericak-Vance M, Haines J, Vance JM, Martin ER: Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 2010, 74(2):97-109.
  • [16]Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H: Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat Genet 2010, 42(9):781-785.
  • [17]Consortium IPDG: Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. The Lancet 2011, 377(9766):641-649.
  • [18]Ostrer H: A genetic profile of contemporary Jewish populations. Nat Rev Genet 2001, 2(11):891-898.
  • [19]Atzmon G, Hao L, Pe'er I, Velez C, Pearlman A, Palamara PF, Morrow B, Friedman E, Oddoux C, Burns E, Ostrer H: Abraham's children in the genome era: major Jewish diaspora populations comprise distinct genetic clusters with shared Middle Eastern Ancestry. Am J Hum Genet 2010, 86(6):850-859.
  • [20]Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB: LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med 2006, 354(4):424-425.
  • [21]Bar-Shira A, Hutter CM, Giladi N, Zabetian CP, Orr-Urtreger A: Ashkenazi Parkinson's disease patients with the LRRK2 G2019S mutation share a common founder dating from the second to fifth centuries. Neurogenetics 2009, 10(4):355-358.
  • [22]Clark LN, Ross BM, Wang Y, Mejia-Santana H, Harris J, Louis ED, Cote LJ, Andrews H, Fahn S, Waters C, Ford B, Frucht S, Ottman R, Marder K: Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology 2007, 69(12):1270-1277.
  • [23]Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A, Chen CM, Clark LN, Condroyer C, De Marco EV, Durr A, Eblan MJ, Fahn S, Farrer MJ, Fung HC, Gan-Or Z, Gasser T, Gershoni-Baruch R, Giladi N, Griffith A, Gurevich T, Januario C, Kropp P, Lang AE, Lee-Chen GJ, Lesage S, et al.: Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med 2009, 361(17):1651-1661.
  • [24]Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW, Doheny KF, Gusella JF, Nichols WC, Foroud T, Myers RH: Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 2009, 124(6):593-605.
  • [25]Marder K, Levy G, Louis ED, Mejia-Santana H, Cote L, Andrews H, Harris J, Waters C, Ford B, Frucht S, Fahn S, Ottman R: Familial aggregation of early- and late-onset Parkinson's disease. Ann Neurol 2003, 54(4):507-513.
  • [26]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
  • [27]Hartl DL, Clark AG: Principles of population genetics. 4th edition. Sunderland, Mass.: Sinauer Associates; 2007.
  • [28]Ge D, Zhang K, Need AC, Martin O, Fellay J, Urban TJ, Telenti A, Goldstein DB: WGAViewer: software for genomic annotation of whole genome association studies. Genome Res 2008, 18(4):640-643.
  • [29]Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI: SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008, 24(24):2938-2939.
  • [30]Clark LN, Wang Y, Karlins E, Saito L, Mejia-Santana H, Harris J, Louis ED, Cote LJ, Andrews H, Fahn S, Waters C, Ford B, Frucht S, Ottman R, Marder K: Frequency of LRRK2 mutations in early- and late-onset Parkinson disease. Neurology 2006, 67(10):1786-1791.
  • [31]Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, Baker A, Jonasdottir A, Ingason A, Gudnadottir VG, Desnica N, Hicks A, Gylfason A, Gudbjartsson DF, Jonsdottir GM, Sainz J, Agnarsson K, Birgisdottir B, Ghosh S, Olafsdottir A, Cazier JB, Kristjansson K, Frigge ML, Thorgeirsson TE, Gulcher JR, Kong A, Stefansson K: A common inversion under selection in Europeans. Nat Genet 2005, 37(2):129-137.
  • [32]Haitina T, Lindblom J, Renstrom T, Fredriksson R: Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. Genomics 2006, 88(6):779-790.
  • [33]Palmieri F: The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 2004, 447(5):689-709.
  • [34]Richard D, Clavel S, Huang Q, Sanchis D, Ricquier D: Uncoupling protein 2 in the brain: distribution and function. Biochem Soc Trans 2001, 29:(Pt 6):812-817.
  • [35]Perez-Mansilla B, Nurrish S: A network of G-protein signaling pathways control neuronal activity in C. elegans. Adv Genet 2009, 65:145-192.
  • [36]Haas A: NSF--fusion and beyond. Trends Cell Biol 1998, 8(12):471-473.
  • [37]Chen S, Liu F: Interaction of dopamine D1 receptor with N-ethylmaleimide-sensitive factor is important for the membrane localization of the receptor. J Neurosci Res 2010, 88(11):2504-2512.
  • [38]Fiorentini C, Busi C, Spano P, Missale C: Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Curr Opin Pharmacol 2010, 10(1):87-92.
  • [39]Tucci A, Nalls MA, Houlden H, Revesz T, Singleton AB, Wood NW, Hardy J, Paisan-Ruiz C: Genetic variability at the PARK16 locus. Eur J Hum Genet 2010, 18(12):1356-1359.
  文献评价指标  
  下载次数:33次 浏览次数:30次