期刊论文详细信息
BMC Cancer
Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation
Marco Cippitelli1  Angela Santoni2  Rossella Paolini1  Rosa Molfetta1  Biancamaria Ricci1  Alessandra Soriani1  Alessandra Zingoni1  Maria Pia Abruzzese1  Cinzia Fionda1 
[1]Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
[2]Istituto Mediterraneo di Neuroscienze Neuromed, Pozzilli, IS, Italy
关键词: Chemoimmunotherapy;    DNA damage response;    Natural killer;    DNAM-1;    Nitric oxide;    Multiple myeloma;   
Others  :  1106713
DOI  :  10.1186/s12885-015-1023-5
 received in 2014-10-01, accepted in 2015-01-14,  发布年份 2015
PDF
【 摘 要 】

Background

DNAX accessory molecule-1 (DNAM-1) is an activating receptor constitutively expressed by macrophages/dendritic cells and by T lymphocytes and Natural Killer (NK) cells, having an important role in anticancer responses; in this regard, combination therapies able to enhance the expression of DNAM-1 ligands on tumor cells are of therapeutic interest. In this study, we investigated the effect of different nitric oxide (NO) donors on the expression of the DNAM-1 ligand Poliovirus Receptor/CD155 (PVR/CD155) in multiple myeloma (MM) cells.

Methods

Six MM cell lines, SKO-007(J3), U266, OPM-2, RPMI-8226, ARK and LP1 were used to investigate the activity of different nitric oxide donors [DETA-NO and the NO-releasing prodrugs NCX4040 (NO-aspirin) and JS-K] on the expression of PVR/CD155, using Flow Cytometry and Real-Time PCR. Western-blot and specific inhibitors were employed to investigate the role of soluble guanylyl cyclase/cGMP and activation of the DNA damage response (DDR).

Results

Our results indicate that increased levels of nitric oxide can upregulate PVR/CD155 cell surface and mRNA expression in MM cells; in addition, exposure to nitric oxide donors renders myeloma cells more efficient to activate NK cell degranulation and enhances their ability to trigger NK cell-mediated cytotoxicity. We found that activation of the soluble guanylyl cyclase and increased cGMP concentrations by nitric oxide is not involved in the up-regulation of ligand expression. On the contrary, treatment of MM cells with nitric oxide donors correlated with the activation of a DNA damage response pathway and inhibition of the ATM /ATR/Chk1/2 kinase activities by specific inhibitors significantly abrogates up-regulation.

Conclusions

The present study provides evidence that regulation of the PVR/CD155 DNAM-1 ligand expression by nitric oxide may represent an additional immune-mediated mechanism and supports the anti-myeloma activity of nitric oxide donors.

【 授权许可】

   
2015 Fionda et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150202010806367.pdf 1066KB PDF download
Figure 6. 30KB Image download
Figure 5. 49KB Image download
Figure 4. 56KB Image download
Figure 3. 24KB Image download
Figure 2. 45KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al.: Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008, 111:2516-20.
  • [2]Kyle RA, Rajkumar SV: Multiple myeloma. Blood 2008, 111:2962-72.
  • [3]Mahindra A, Laubach J, Raje N, Munshi N, Richardson PG, Anderson K: Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol 2012, 9:135-43.
  • [4]Mohty B, El-Cheikh J, Yakoub-Agha I, Avet-Loiseau H, Moreau P, Mohty M: Treatment strategies in relapsed and refractory multiple myeloma: a focus on drug sequencing and ‘retreatment’ approaches in the era of novel agents. Leukemia 2012, 26:73-85.
  • [5]Ludwig H, Durie BG, McCarthy P, Palumbo A, San MJ, Barlogie B, et al.: IMWG consensus on maintenance therapy in multiple myeloma. Blood 2012, 119:3003-15.
  • [6]Frohn C, Hoppner M, Schlenke P, Kirchner H, Koritke P, Luhm J: Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 2002, 119:660-4.
  • [7]Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, et al.: Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005, 128:192-203.
  • [8]Koh CY, Raziuddin A, Welniak LA, Blazar BR, Bennett M, Murphy WJ: NK inhibitory-receptor blockade for purging of leukemia: effects on hematopoietic reconstitution. Biol Blood Marrow Transplant 2002, 8:17-25.
  • [9]Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D, et al.: HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 2005, 105:251-8.
  • [10]El Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW, et al.: The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 2007, 67:8444-9.
  • [11]Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, et al.: MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci U S A 2008, 105:1285-90.
  • [12]Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, et al.: ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 2009, 113:3503-11.
  • [13]Girlanda S, Fortis C, Belloni D, Ferrero E, Ticozzi P, Sciorati C, et al.: MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells Costimulates pamidronate-activated gammadelta lymphocytes. Cancer Res 2005, 65:7502-8.
  • [14]Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH: Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991, 351:714-8.
  • [15]Robinson LJ, Weremowicz S, Morton CC, Michel T: Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene. Genomics 1994, 19:350-7.
  • [16]Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH: Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci U S A 1992, 89:6711-5.
  • [17]Mocellin S, Bronte V, Nitti D: Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 2007, 27:317-52.
  • [18]Muntane J, la Mata MD: Nitric oxide and cancer. World J Hepatol 2010, 2:337-44.
  • [19]Fukumura D, Kashiwagi S, Jain RK: The role of nitric oxide in tumour progression. Nat Rev Cancer 2006, 6:521-34.
  • [20]Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG: The role of nitric oxide in cancer. Cell Res 2002, 12:311-20.
  • [21]Fionda C, Soriani A, Malgarini G, Iannitto ML, Santoni A, Cippitelli M: Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. J Immunol 2009, 183:4385-94.
  • [22]Fionda C, Malgarini G, Soriani A, Zingoni A, Cecere F, Iannitto ML, et al.: Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of STAT3. J Immunol 2013, 190:6662-72.
  • [23]Ardolino M, Zingoni A, Cerboni C, Cecere F, Soriani A, Iannitto ML, et al.: DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction. Blood 2011, 117:4778-86.
  • [24]Soriani A, Iannitto ML, Ricci B, Fionda C, Malgarini G, Morrone S, et al.: Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1. J Immunol 2014, 193:950-60.
  • [25]Mainiero F, Soriani A, Strippoli R, Jacobelli J, Gismondi A, Piccoli M, et al.: RAC1/P38 MAPK signaling pathway controls beta1 integrin-induced interleukin-8 production in human natural killer cells. Immunity 2000, 12:7-16.
  • [26]Cippitelli M, Fionda C, Di Bona D, Di Rosa F, Lupo A, Piccoli M, et al.: Negative regulation of CD95 ligand gene expression by vitamin D3 in T lymphocytes. J Immunol 2002, 168:1154-66.
  • [27]Wei L, Gravitt PE, Song H, Maldonado AM, Ozbun MA: Nitric oxide induces early viral transcription coincident with increased DNA damage and mutation rates in human papillomavirus-infected cells. Cancer Res 2009, 69:4878-84.
  • [28]Bove PF, Hristova M, Wesley UV, Olson N, Lounsbury KM, van der Vliet A: Inflammatory levels of nitric oxide inhibit airway epithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J Biol Chem 2008, 283:17919-28.
  • [29]Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al.: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 2009, 10:48-57.
  • [30]Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, et al.: The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 2009, 106:17858-63.
  • [31]Murad F: Regulation of cytosolic guanylyl cyclase by nitric oxide: the NO-cyclic GMP signal transduction system. Adv Pharmacol 1994, 26:19-33.
  • [32]Kots AY, Bian K, Murad F: Nitric oxide and cyclic GMP signaling pathway as a focus for drug development. Curr Med Chem 2011, 18:3299-305.
  • [33]Abi-Gerges N, Hove-Madsen L, Fischmeister R, Mery PF: A comparative study of the effects of three guanylyl cyclase inhibitors on the L-type Ca2+ and muscarinic K+ currents in frog cardiac myocytes. Br J Pharmacol 1997, 121:1369-77.
  • [34]Sandirasegarane L, Diamond J: The nitric oxide donors, SNAP and DEA/NO, exert a negative inotropic effect in rat cardiomyocytes which is independent of cyclic GMP elevation. J Mol Cell Cardiol 1999, 31:799-808.
  • [35]Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, et al.: The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 2008, 45:18-31.
  • [36]Martinez MC, Andriantsitohaina R: Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 2009, 11:669-702.
  • [37]Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR: The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 1999, 424:37-49.
  • [38]Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al.: DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005, 434:864-70.
  • [39]Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004, 73:39-85.
  • [40]Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, et al.: Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 1999, 59:4375-82.
  • [41]Carcagno AL, Ogara MF, Sonzogni SV, Marazita MC, Sirkin PF, Ceruti JM, et al.: E2F1 transcription is induced by genotoxic stress through ATM/ATR activation. IUBMB Life 2009, 61:537-43.
  • [42]Lin WC, Lin FT, Nevins JR: Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 2001, 15:1833-44.
  • [43]Biswas AK, Johnson DG: Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res 2012, 72:13-7.
  • [44]Tesei A, Zoli W, Fabbri F, Leonetti C, Rosetti M, Bolla M, et al.: NCX 4040, an NO-donating acetylsalicylic acid derivative: efficacy and mechanisms of action in cancer cells. Nitric Oxide 2008, 19:225-36.
  • [45]Shami PJ, Saavedra JE, Wang LY, Bonifant CL, Diwan BA, Singh SV, et al.: JS-K, a glutathione/glutathione S-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol Cancer Ther 2003, 2:409-17.
  • [46]Kiziltepe T, Hideshima T, Ishitsuka K, Ocio EM, Raje N, Catley L, et al.: JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 2007, 110:709-18.
  • [47]Ullrich E, Bonmort M, Mignot G, Kroemer G, Zitvogel L: Tumor stress, cell death and the ensuing immune response. Cell Death Differ 2008, 15:21-8.
  • [48]Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G: The anticancer immune response: indispensable for therapeutic success? J Clin Invest 2008, 118:1991-2001.
  • [49]Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G: Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013, 39:74-88.
  • [50]Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, et al.: Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology 2013, 2:e25595.
  • [51]Gasser S: DNA damage response and development of targeted cancer treatments. Ann Med 2007, 39:457-64.
  • [52]Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.: Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 2005, 65:6321-9.
  • [53]Wu X, Tao Y, Hou J, Meng X, Shi J: Valproic acid upregulates NKG2D ligand expression through an ERK-dependent mechanism and potentially enhances NK cell-mediated lysis of myeloma. Neoplasia 2012, 14:1178-89.
  • [54]Cerboni C, Fionda C, Soriani A, Zingoni A, Doria M, Cippitelli M, et al.: The DNA damage response: a common pathway in the regulation of NKG2D and DNAM-1 ligand expression in normal, infected, and cancer cells. Front Immunol 2014, 4:508.
  • [55]Shi Q, Xiong Q, Wang B, Le X, Khan NA, Xie K: Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis. Cancer Res 2000, 60:2579-83.
  • [56]Xu L, Xie K, Fidler IJ: Therapy of human ovarian cancer by transfection with the murine interferon beta gene: role of macrophage-inducible nitric oxide synthase. Hum Gene Ther 1998, 9:2699-708.
  • [57]Bruns CJ, Shinohara H, Harbison MT, Davis DW, Nelkin G, Killion JJ, et al.: Therapy of human pancreatic carcinoma implants by irinotecan and the oral immunomodulator JBT 3002 is associated with enhanced expression of inducible nitric oxide synthase in tumor-infiltrating macrophages. Cancer Res 2000, 60:2-7.
  • [58]Di CE, Comes A, Basso S, De AA, Meazza R, Musiani P, et al.: The combined action of IL-15 and IL-12 gene transfer can induce tumor cell rejection without T and NK cell involvement. J Immunol 2000, 165:3111-8.
  • [59]Jyothi MD, Khar A: Induction of nitric oxide production by natural killer cells: its role in tumor cell death. Nitric Oxide 1999, 3:409-18.
  • [60]Cifone MG, Ulisse S, Santoni A: Natural killer cells and nitric oxide. Int Immunopharmacol 2001, 1:1513-24.
  • [61]Perrotta C, Falcone S, Capobianco A, Camporeale A, Sciorati C, De PC, et al.: Nitric oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer Res 2004, 64:3767-71.
  • [62]Wang HH, McIntosh AR, Hasinoff BB, Rector ES, Ahmed N, Nance DM, et al.: B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis. Cancer Res 2000, 60:5862-9.
  • [63]Qiu H, Orr FW, Jensen D, Wang HH, McIntosh AR, Hasinoff BB, et al.: Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol 2003, 162:403-12.
  • [64]Gasser S, Orsulic S, Brown EJ, Raulet DH: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005, 436:1186-90.
  • [65]Shami PJ, Saavedra JE, Bonifant CL, Chu J, Udupi V, Malaviya S, et al.: Antitumor activity of JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and related O2-aryl diazeniumdiolates in vitro and in vivo. J Med Chem 2006, 49:4356-66.
  • [66]Kiziltepe T, Anderson KC, Kutok JL, Jia L, Boucher KM, Saavedra JE, et al.: JS-K has potent anti-angiogenic activity in vitro and inhibits tumour angiogenesis in a multiple myeloma model in vivo. J Pharm Pharmacol 2010, 62:145-51.
  • [67]Zheng H, Yu X, Collin-Osdoby P, Osdoby P: RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption. J Biol Chem 2006, 281:15809-20.
  • [68]Weiss JM, Ridnour LA, Back T, Hussain SP, He P, Maciag AE, et al.: Macrophage-dependent nitric oxide expression regulates tumor cell detachment and metastasis after IL-2/anti-CD40 immunotherapy. J Exp Med 2010, 207:2455-67.
  • [69]Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al.: Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 2013, 24:589-602.
  • [70]Berardi S, Ria R, Reale A, De LA, Catacchio I, Moschetta M, et al.: Multiple myeloma macrophages: pivotal players in the tumor microenvironment. J Oncol 2013, 2013:183602.
  • [71]Siemens DR, Hu N, Sheikhi AK, Chung E, Frederiksen LJ, Pross H, et al.: Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res 2008, 68:4746-53.
  • [72]Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR, et al.: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res 2011, 71:7433-41.
  文献评价指标  
  下载次数:18次 浏览次数:7次