期刊论文详细信息
BMC Developmental Biology
3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development
Nathalie Beaujean1  Pascale Debey1  Claire Boulesteix1  Renaud Fleurot1  Gaétan Lehmann1  Amélie Bonnet-Garnier1  Pierre Adenot1  Tiphaine Aguirre-Lavin1 
[1] ENVA, F-94700, Maisons Alfort, France
关键词: Computational analysis;    Embryo;    Nuclear organization;    Nucleolus;    rDNA;    Telomeres;    Centromeres;    Heterochromatin;    FISH;   
Others  :  1086422
DOI  :  10.1186/1471-213X-12-30
 received in 2012-06-11, accepted in 2012-10-11,  发布年份 2012
PDF
【 摘 要 】

Background

Embryonic development proceeds through finely tuned reprogramming of the parental genomes to form a totipotent embryo. Cells within this embryo will then differentiate and give rise to all the tissues of a new individual. Early embryonic development thus offers a particularly interesting system in which to analyze functional nuclear organization. When the organization of higher-order chromatin structures, such as pericentromeric heterochromatin, was first analyzed in mouse embryos, specific nuclear rearrangements were observed that correlated with embryonic genome activation at the 2-cell stage. However, most existing analyses have been conducted by visual observation of fluorescent images, in two dimensions or on z-stack sections/projections, but only rarely in three dimensions (3D).

Results

In the present study, we used DNA fluorescent in situ hybridization (FISH) to localize centromeric (minor satellites), pericentromeric (major satellites), and telomeric genomic sequences throughout the preimplantation period in naturally fertilized mouse embryos (from the 1-cell to blastocyst stage). Their distribution was then analyzed in 3D on confocal image stacks, focusing on the nucleolar precursor bodies and nucleoli known to evolve rapidly throughout the first developmental stages. We used computational imaging to quantify various nuclear parameters in the 3D-FISH images, to analyze the organization of compartments of interest, and to measure physical distances between these compartments.

Conclusions

The results highlight differences in nuclear organization between the two parental inherited genomes at the 1-cell stage, i.e. just after fertilization. We also found that the reprogramming of the embryonic genome, which starts at the 2-cell stage, undergoes other remarkable changes during preimplantation development, particularly at the 4-cell stage.

【 授权许可】

   
2012 Aguirre Lavin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116011802417.pdf 2688KB PDF download
Figure 8. 71KB Image download
Figure 7. 81KB Image download
Figure 6. 152KB Image download
Figure 5. 51KB Image download
Figure 4. 66KB Image download
Figure 3. 132KB Image download
Figure 2. 113KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T: Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 2007, 8:104-115.
  • [2]Misteli T: Beyond the sequence: cellular organization of genome function. Cell 2007, 128:787-800.
  • [3]Schneider R, Grosschedl R: Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 2007, 21:3027-3043.
  • [4]Trinkle-Mulcahy L, Lamond AI: Nuclear functions in space and time: gene expression in a dynamic, constrained environment. FEBS Lett 2008, 582:1960-1970.
  • [5]Hajkova P: Epigenetic reprogramming–taking a lesson from the embryo. Curr Opin Cell Biol 2010, 22:342-350.
  • [6]Fulka H, St John JC, Fulka J, Hozák P: Chromatin in early mammalian embryos: achieving the pluripotent state. Differ Res Biol Divers 2008, 76:3-14.
  • [7]Sirard Ma: Activation of the embryonic genome. Soc Reprod Fertil Suppl 2010, 67:145-158.
  • [8]Martin C, Beaujean N, Brochard V, Audouard C, Zink D, Debey P: Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 2006, 292:317-332.
  • [9]Merico V, Barbieri J, Zuccotti M, Joffe B, Cremer T, Redi CA, Solovei I, Garagna S: Epigenomic differentiation in mouse preimplantation nuclei of biparental, parthenote and cloned embryos. Chromosome Res 2007, 15:341-360.
  • [10]Probst AV, Santos F, Reik W, Almouzni G, Dean W: Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 2007, 116:403-415.
  • [11]Probst AV, Okamoto I, Casanova M, Elmarjou F, Le P, Almouzni G, Marjou FE, Baccon PL: A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 2010, 1:625-638.
  • [12]Bouniol C, Nguyen E, Debey P: Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 1995, 218:57-62.
  • [13]Nothias JY, Majumder S, Kaneko KJ, DePamphilis ML: Regulation of gene expression at the beginning of mammalian development. J Biol Chem 1995, 270:22077-22080.
  • [14]Hamatani T, Carter MG, Sharov AA, Ko MSH: Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 2004, 6:117-131.
  • [15]Zatsepina O, Baly C, Chebrout M, Debey P: The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the Cajal (Coiled) Body. Dev Biol 2003, 253:66-83.
  • [16]Francastel C, Schübeler D, Martin DI, Groudine M: Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol 2000, 1:137-143.
  • [17]Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA: Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 2004, 118:555-566.
  • [18]Zink D, Amaral MD, Englmann A, Lang S, Clarke L, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D: Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 2004, 166:815-825.
  • [19]Francastel C, Walters MC, Groudine M, Martin DI: A functional enhancer suppresses silencing of a transgene and prevents its localization close to centrometric heterochromatin. Cell 1999, 99:259-269.
  • [20]Guasconi V, Pritchard L-L, Fritsch L, Mesner LD, Francastel C, Harel-Bellan A, Ait-Si-Ali S: Preferential association of irreversibly silenced E2F-target genes with pericentromeric heterochromatin in differentiated muscle cells. Epigenetics Offic J DNA Methylation Soc 2010, 5:704-709.
  • [21]Pidoux AL, Allshire RC: Centromeres: getting a grip of chromosomes. Curr Opin Cell Biol 2000, 12:308-319.
  • [22]Alcobia I, Dilão R, Parreira L: Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 2000, 95:1608-1615.
  • [23]Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG: Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997, 91:845-854.
  • [24]Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, Fussenegger M, Santoro R: The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 2010, 29:2135-2146.
  • [25]Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla M-E: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010, 12:853-862.
  • [26]Martin C, Brochard V, Migne C, Zink D, Debey P, Beaujean N: Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming. Mol Reprod Dev 2006, 73:1102-1111.
  • [27]Maalouf WE, Liu Z, Brochard V, Renard J-P, Debey P, Beaujean N, Zink D: Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. BMC Dev Biol 2009, 9:11. BioMed Central Full Text
  • [28]Gorski S, Misteli T: Systems biology in the cell nucleus. J Cell Sci 2005, 118:4083-4092.
  • [29]Koehler D, Zakhartchenko V, Froenicke L, Stone G, Stanyon R, Wolf E, Cremer T, Brero A: Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res 2009, 315:2053-2063.
  • [30]Pichugin A, Le Bourhis D, Adenot P, Lehmann G, Audouard C, Renard J-P, Vignon X, Beaujean N: Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos. Reproduction 2010, 139:129-137.
  • [31]Andrey P, Kiêu K, Kress C, Lehmann G, Tirichine L, Liu Z, Biot E, Adenot P-G, Hue-Beauvais C, Houba-Hérin N, Duranthon V, Devinoy E, Beaujean N, Gaudin V, Maurin Y, Debey P: Statistical Analysis of 3D Images Detects Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei. PLoS Comput Biol 2010, 6:e1000853.
  • [32]Adenot PG, Mercier Y, Renard JP, Thompson EM: Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 1997, 124:4615-4625.
  • [33]Santos F, Hendrich B, Reik W, Dean W: Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 2002, 241:172-182.
  • [34]Romanova L, Korobova F, Noniashvilli E, Dyban A, Zatsepina O: High resolution mapping of ribosomal DNA in early mouse embryos by fluorescence in situ hybridization. Biol Reprod 2006, 74:807-815.
  • [35]Debey P, Renard JP, Coppey-Moisan M, Monnot I, Geze M: Dynamics of chromatin changes in live one-cell mouse embryos: a continuous follow-up by fluorescence microscopy. Exp Cell Res 1989, 183:413-433.
  • [36]Adenot PG, Szöllösi MS, Geze M, Renard JP, Debey P: Dynamics of paternal chromatin changes in live one-cell mouse embryo after natural fertilization. Mol Reprod Dev 1991, 28:23-34.
  • [37]Guenatri M, Bailly D, Maison C, Almouzni G: Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 2004, 166:493-505.
  • [38]Mayer W, Smith A, Fundele R, Haaf T: Spatial separation of parental genomes in preimplantation mouse embryos. J Cell Biol 2000, 148:629-634.
  • [39]Santos AP, Shaw P: Interphase chromosomes and the Rabl configuration: does genome size matter? J Microsc 2004, 214:201-206.
  • [40]Albert M, Peters AHFM: Genetic and epigenetic control of early mouse development. Curr Opin Genet Dev 2009, 19:113-121.
  • [41]McLay DW, Clarke HJ: Remodelling the paternal chromatin at fertilization in mammals. Reproduction 2003, 125:625-633.
  • [42]Berríos S, Ayarza E, Moreno M, Paulos A, Fernández-Donoso R: Non-random distribution of the pericentromeric heterochromatin in meiotic prophase nuclei of mammalian spermatocytes. Genetica 1999, 106:187-195.
  • [43]Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thévenon J, Catena R, Davidson I, Garin J, Khochbin S, others: Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 2007, 176:283-294.
  • [44]Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP: Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 2010, 5:e10531.
  • [45]Tessadori F, Chupeau M-c, Chupeau Y, Knip M, Germann S, Driel RV, Fransz P, Gaudin V: Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 2007, 120:1200-1208.
  • [46]Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J: The maternal nucleolus is essential for early embryonic development in mammals. Sci New York NY 2008, 319:613-616.
  • [47]Kopecný V, Landa V, Pavlok A: Localization of nucleic acids in the nucleoli of oocytes and early embryos of mouse and hamster: an autoradiographic study. Mol Reprod Dev 1995, 41:449-458.
  • [48]Kopecny V, Biggiogera M, Laurincik J, Pivko J, Grafenau P, Martin TE, Fu XD, Fakan S: Fine structural cytochemical and immunocytochemical analysis of nucleic acids and ribonucleoprotein distribution in nuclei of pig oocytes and early preimplantation embryos. Chromosoma 1996, 104:561-574.
  • [49]Biggiogera M, Bürki K, Kaufmann SH, Shaper JH, Gas N, Amalric F, Fakan S: Nucleolar distribution of proteins B23 and nucleolin in mouse preimplantation embryos as visualized by immunoelectron microscopy. Development 1990, 110:1263-1270.
  • [50]Biggiogera M, Martin TE, Gordon J, Amalric F, Fakan S: Physiologically inactive nucleoli contain nucleoplasmic ribonucleoproteins: immunoelectron microscopy of mouse spermatids and early embryos. Exp Cell Res 1994, 213:55-63.
  • [51]Baran V, Veselá J, Rehák P, Koppel J, Fléchon JE: Localization of fibrillarin and nucleolin in nucleoli of mouse preimplantation embryos. Mol Reprod Dev 1995, 40:305-310.
  • [52]Misteli T: Concepts in nuclear architecture. BioEssays Rev Mol Cell Dev Biol 2005, 27:477-487.
  • [53]Hancock R: A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J Struct Biol 2004, 146:281-9010. 1016/j.jsb.2003.12.008Available: http://www.ncbi.nlm.nih.gov/pubmed/15099570 webcite
  • [54]Marenduzzo D, Micheletti C, Cook PR: Entropy-Driven Genome Organization. Biophys J 2006, 90:3712-3721.
  • [55]Marenduzzo D, Finan K, Cook PR: The depletion attraction: an underappreciated force driving cellular organization. J Cell Biol 2006, 175:681-686.
  • [56]De Nooijer S, Wellink J, Mulder B, Bisseling T: Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Res 2009, 37:3558-3568.
  • [57]Horáková AH, Bártová E, Galiová G, Uhlírová R, Matula P, Kozubek S: SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions. Chromosoma 2010, 119:227-241.
  • [58]Van Der Heijden GW, Dieker JW, Derijck AAHA, Muller S, Berden JHM, Braat DDM, Van Der Vlag J, De Boer P: Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 2005, 122:1008-1022.
  • [59]Santos F, Peters AH, Otte AP, Reik W, Dean W: Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 2005, 280:225-236.
  • [60]Maison C, Bailly D, Peters A, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G: Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 2002, 30:329-334.
  • [61]Muchardt C, Guilleme M, Seeler J-S, Trouche D, Dejean A, Yaniv M: Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep 2002, 3:975-981.
  • [62]Bouzinba-Segard H, Guais A, Francastel C: Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci 2006, 103:8709-8714.
  • [63]Hassouna N, Michot B, Bachellerie JP: The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 1984, 12:3563-3583.
  • [64]Raynal F, Michot B, Bachellerie JP: Complete nucleotide sequence of mouse 18 S rRNA gene: comparison with other available homologs. FEBS Lett 1984, 167:263-268.
  • [65]Lehmann G, Pincus Z, Regrain B: WrapITK: Enhanced languages support for the Insight Toolkit. Insight J 2006. http://hdl.handle.net/1926/188 webcite
  • [66]Lehmann G: Kappa Sigma Clipping. Insight J 2006. http://hdl.handle.net/1926/367 webcite
  • [67]Lehmann G: Label object representation and manipulation with ITK. Insight J 2007. http://hdl.handle.net/1926/584 webcite
  文献评价指标  
  下载次数:81次 浏览次数:30次