期刊论文详细信息
BMC Research Notes
Isolation and characterization of nine polymorphic microsatellite markers for the deep-sea shrimp Nematocarcinus lanceopes (Crustacea: Decapoda: Caridea)
Florian Leese2  Julia Schwarzer1  Christoph Mayer1  Michael J Raupach3  Johannes Dambach1 
[1] Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany;Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, 44801, Bochum, Germany;Deutsches Zentrum für Marine Biodiversitätsforschung, Senckenberg am Meer, Wilhelmshaven, Germany
关键词: Southern ocean;    Microsatellites;    Deep sea;    Antarctic;    Nematocarcinus lanceopes;   
Others  :  1143403
DOI  :  10.1186/1756-0500-6-75
 received in 2012-12-03, accepted in 2013-02-27,  发布年份 2013
PDF
【 摘 要 】

Background

The shrimp Nematocarcinus lanceopes Bate, 1888 is found in the deep sea around Antarctica and sub-Antarctic islands. Previous studies on mitochondrial data and species distribution models provided evidence for a homogenous circum-Antarctic population of N. lanceopes. However, to analyze the fine-scale population genetic structure and to examine influences of abiotic environmental conditions on population composition and genetic diversity, a set of fast evolving nuclear microsatellite markers is required.

Findings

We report the isolation and characterization of nine polymorphic microsatellite markers from the Antarctic deep-sea shrimp species Nematocarcinus lanceopes (Crustacea: Decapoda: Caridea). Microsatellite markers were screened in 55 individuals from different locations around the Antarctic continent. All markers were polymorphic with 9 to 25 alleles per locus. The observed heterozygosity ranged from 0.545 to 0.927 and the expected heterozygosity from 0.549 to 0.934.

Conclusions

The reported markers provide a novel tool to study genetic structure and diversity in Nematocarcinus lanceopes populations in the Southern Ocean and monitor effects of ongoing climate change in the region on the populations inhabiting these.

【 授权许可】

   
2013 Dambach et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329070937582.pdf 246KB PDF download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Bate CC: Report on the Crustacea Macura collected by HMS Challenger during the years 1873–76. Part 1. Rep Sci Res Voy HMS Challenger 1888, 24:1-929.
  • [2]Kirkwood JM: A guide to the Decapoda of the Southern Ocean. ANARE Research Notes 1984, 11:1-47.
  • [3]Thatje S, Hillenbrand CD, Larter R: On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 2005, 20:534-540.
  • [4]Raupach MJ, Thatje S, Dambach J, Rehm P, Misof B, et al.: Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar Biol 2010, 157:1783-1797.
  • [5]Dambach J, Thatje S, Roedder D, Basher Z, Raupach M: Effects of Late-Cenozoic glaciation on habitat availability in Antarctic benthic shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 2012, 7:e46283.
  • [6]Meredith MP, King JC: Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 2005, 32:L19604.
  • [7]Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, et al.: Marine pelagic ecosystems: the west Antarctic Peninsula. Philos T Roy B 2007, 362:67-94.
  • [8]Flores H, Atkinson A, Kawaguchi S, Krafft BA, et al.: Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 2012, 458:1-9.
  • [9]Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM: Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 2011, 18:7625-7628.
  • [10]Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, Grivet D: Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 2010, 19:3806-3823.
  • [11]Leese F, Mayer C, Held C: Isolation of microsatellites from unknown genomes using known genomes as enrichment templates. Limnol Oceanogr-Meth 2008, 7:412-426.
  • [12]Leese F, Brand P, Rozenberg A, Mayer C, et al.: Exploring Pandora’s Box: Potential and pitfalls of high throughput sequencing for evolutionary biologists. PLoS One 2012, 7(11):e49202.
  • [13]Drummond AJ, Ashton B, Buxton S, Cheung M, et al.: Geneious v5.5. 2011. Available from [http://www.geneious.com webcite]
  • [14]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  • [15]Schuelke M: An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 2000, 18:233-234.
  • [16]Brownstein MJ, Carpten JD, Smith JR: Modulation of non-tem- plated nucleotide addition by taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 1996, 20:1004-1010.
  • [17]Chybicki IJ, Burczyk J: Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 2009, 100:106-113.
  • [18]Rousset F: Genepop’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 2008, 8:103-106.
  文献评价指标  
  下载次数:47次 浏览次数:52次