期刊论文详细信息
BMC Structural Biology
Localization of putative binding sites for cyclic guanosine monophosphate and the anti-cancer drug 5-fluoro-2′-deoxyuridine-5′-monophosphate on ABCC11 in silico models
Lea Payen4  Charles Dumontet1  Attilio Di Pietro3  Pierre Falson3  Raphaël Terreux3  Mylène Honorat2 
[1] Hospices Civils de Lyon, Centre hospitalier de biologie sud, Laboratoire de biochimie et biologie moléculaire, Pierre-Bénite F-69310, France;LabEx DEVweCAN, Lyon F-69008, France;Université Lyon 1, UMR 5086, Lyon F-69007, France;Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, Lyon F-69008, France
关键词: Dynamics simulation;    Docking;    Homology modelling;    5FdUMP;    cGMP;    ABCC11/MRP8;    ABC transporter;   
Others  :  1091363
DOI  :  10.1186/1472-6807-13-7
 received in 2012-11-08, accepted in 2013-04-18,  发布年份 2013
PDF
【 摘 要 】

Background

The Multidrug Resistance Protein ABCC11/MRP8 is expressed in physiological barriers and tumor breast tissues in which it secretes various substrates including cGMP (cyclic guanosine monophosphate) and 5FdUMP (5-fluoro-2′-deoxyuridine-5′-monophosphate), the active metabolite of the anticancer drug 5-FluoroUracil (frequently included to anticancer therapy).

Previously, we described that ABCC11 high levels are associated to the estrogen receptor (ER) expression level in breast tumors and in cell lines resistant to tamoxifen. Consequently, by lowering the intracellular concentration of anticancer drugs, ABCC11 likely promotes a multidrug resistance (MDR) phenotype and decreases efficiency of anticancer therapy of 5FdUMP. Since no experimental data about binding sites of ABCC11 substrate are available, we decided to in silico localize putative substrate interaction sites of the nucleotide derivatives. Taking advantage of molecular dynamics simulation, we also analysed their evolution under computational physiological conditions and during the time.

Results

Since ABCC11 crystal structure is not resolved yet, we used the X-ray structures of the mouse mdr3 (homologous to human ABCB1) and of the bacterial homolog Sav1866 to generate two independent ABCC11 homology models in inward- and outward-facing conformations. Based on docking analyses, two putative binding pockets, for cGMP and 5FdUMP, were localized in both inward- and outward-facing conformations. Furthermore, based on our 3D models, and available biochemical data from homologous transporters, we identified several residues, potentially critical in ABCC11 transport function. Additionally, molecular dynamics simulation on our inward-facing model revealed for the first time conformation changes assumed to occur during transport process.

Conclusions

ABCC11 would present two binding sites for cGMP and for 5FdUMP. Substrates likely first bind at the intracellular side of the transmembrane segment while ABCC11 is open forward the cytoplasm (inward-facing conformation). Then, along with conformational changes, it would pass through ABCC11 and fix the second site (close to the extracellular side), until the protein open itself to the extracellular space and allow substrate release.

【 授权许可】

   
2013 Honorat et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128171404559.pdf 3844KB PDF download
Figure 10. 27KB Image download
Figure 9. 146KB Image download
Figure 8. 148KB Image download
Figure 7. 226KB Image download
Figure 6. 45KB Image download
Figure 5. 99KB Image download
Figure 4. 128KB Image download
Figure 3. 92KB Image download
Figure 2. 87KB Image download
Figure 1. 91KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Guo Y, Kotova E, Chen ZS, Lee K, Hopper-Borge E, Belinsky MG, Kruh GD: MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenine. J Biol Chem 2003, 278(32):29509-29514.
  • [2]Chen ZS, Guo Y, Belinsky MG, Kotova E, Kruh GD: Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol Pharmacol 2005, 67(2):545-557.
  • [3]Bortfeld M, Rius M, Konig J, Herold-Mende C, Nies AT, Keppler D: Human multidrug resistance protein 8 (MRP8/ABCC11), an apical efflux pump for steroid sulfates, is an axonal protein of the CNS and peripheral nervous system. Neuroscience 2006, 137(4):1247-1257.
  • [4]Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG, Chen ZS: ABCC10, ABCC11, and ABCC12. Pflugers Arch 2007, 453(5):675-684.
  • [5]Honorat M, Mesnier A, Vendrell J, Guitton J, Bieche I, Lidereau R, Kruh GD, Dumontet C, Cohen P, Payen L: ABCC11 expression is regulated by estrogen in MCF7 cells, correlated with estrogen receptor alpha expression in postmenopausal breast tumors and overexpressed in tamoxifen-resistant breast cancer cells. Endocr Relat Canc 2008, 15(1):125-138.
  • [6]Oguri T, Bessho Y, Achiwa H, Ozasa H, Maeno K, Maeda H, Sato S, Ueda R: MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Canc Ther 2007, 6(1):122-127.
  • [7]Guo Y, Kock K, Ritter CA, Chen ZS, Grube M, Jedlitschky G, Illmer T, Ayres M, Beck JF, Siegmund W, Ehninger G, Gandhi V, Kroemer HK, Kruh GD, Schaich M: Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival. Clin Canc Res 2009, 15(5):1762-1769.
  • [8]Bera TK, Lee S, Salvatore G, Lee B, Pastan I: MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol Med 2001, 7(8):509-516.
  • [9]Bieche I, Girault I, Urbain E, Tozlu S, Lidereau R: Relationship between intratumoral expression of genes coding for xenobiotic-metabolizing enzymes and benefit from adjuvant tamoxifen in estrogen receptor alpha-positive postmenopausal breast carcinoma. Breast Canc Res 2004, 6(3):R252-R263. BioMed Central Full Text
  • [10]Park S, Shimizu C, Shimoyama T, Takeda M, Ando M, Kohno T, Katsumata N, Kang YK, Nishio K, Fujiwara Y: Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Canc Res Treat 2006, 99(1):9-17.
  • [11]Honorat M, Guitton J, Dumontet C, Payen L: Expression level and hormonal regulation of ABC transporters in breast cancer. Curr Canc Ther Rev 2010, 7(2):119-154.
  • [12]Van Aubel RA, Smeets PH, van den Heuvel JJ, Russel FG: Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol 2005, 288(2):F327-F333.
  • [13]Honorat M, Falson P, Terreux R, Di Pietro A, Dumontet C, Payen L: Multidrug resistance ABC transporter structure predictions by homology modeling approaches. Curr Drug Metab 2011, 12(3):268-277.
  • [14]Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G: Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009, 323(5922):1718-1722.
  • [15]Dawson RJ, Locher KP: Structure of a bacterial multidrug ABC transporter. Nature 2006, 443(7108):180-185.
  • [16]Dawson RJ, Locher KP: Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 2007, 581(5):935-938.
  • [17]Conrad S, Kauffmann HM, Ito K, Leslie EM, Deeley RG, Schrenk D, Cole SP: A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. Pharmacogenetics 2002, 12(4):321-330.
  • [18]Haimeur A, Conseil G, Deeley RG, Cole SP: Mutations of charged amino acids in or near the transmembrane helices of the second membrane spanning domain differentially affect the substrate specificity and transport activity of the multidrug resistance protein MRP1 (ABCC1). Mol Pharmacol 2004, 65(6):1375-1385.
  • [19]Conseil G, Deeley RG, Cole SP: Functional importance of three basic residues clustered at the cytosolic interface of transmembrane helix 15 in the multidrug and organic anion transporter MRP1 (ABCC1). J Biol Chem 2006, 281(1):43-50.
  • [20]Situ D, Haimeur A, Conseil G, Sparks KE, Zhang D, Deeley RG, Cole SP: Mutational analysis of ionizable residues proximal to the cytoplasmic interface of membrane spanning domain 3 of the multidrug resistance protein, MRP1 (ABCC1): glutamate 1204 is important for both the expression and catalytic activity of the transporter. J Biol Chem 2004, 279(37):38871-38880.
  • [21]Ravna AW, Sylte I, Sager G: Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5). Theor Biol Med Model 2007, 4:33. BioMed Central Full Text
  • [22]Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D: The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 1994, 269(45):27807-27810.
  • [23]Ravna AW, Sylte I, Sager G: A molecular model of a putative substrate releasing conformation of multidrug resistance protein 5 (MRP5). Eur J Med Chem 2008, 43(11):2557-2567.
  • [24]Pajeva IK, Globisch C, Wiese M: Comparison of the inward- and outward-open homology models and ligand binding of human P-glycoprotein. FEBS J 2009, 276(23):7016-7026.
  • [25]Ravna AW, Sager G: Molecular model of the outward facing state of the human multidrug resistance protein 4 (MRP4/ABCC4). Bioorg Med Chem Lett 2008, 18(12):3481-3483.
  • [26]Zhang DW, Cole SP, Deeley RG: Determinants of the substrate specificity of multidrug resistance protein 1: role of amino acid residues with hydrogen bonding potential in predicted transmembrane helix 17. J Biol Chem 2002, 277(23):20934-20941.
  • [27]Loo TW, Clarke DM: Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. J Biol Chem 2001, 276(18):14972-14979.
  • [28]El-Sheikh AA, van den Heuvel JJ, Krieger E, Russel FG, Koenderink JB: Functional role of arginine 375 in transmembrane helix 6 of multidrug resistance protein 4 (MRP4/ABCC4). Mol Pharmacol 2008, 74(4):964-971.
  • [29]Loo TW, Clarke DM: Functional consequences of glycine mutations in the predicted cytoplasmic loops of P-glycoprotein. J Biol Chem 1994, 269(10):7243-7248.
  • [30]Ryu S, Kawabe T, Nada S, Yamaguchi A: Identification of basic residues involved in drug export function of human multidrug resistance-associated protein 2. J Biol Chem 2000, 275(50):39617-39624.
  • [31]Yoshiura K, Kinoshita A, Ishida T, Ninokata A, Ishikawa T, Kaname T, Bannai M, Tokunaga K, Sonoda S, Komaki R, Ihara M, Saenko VA, Alipov GK, Sekine I, Komatsu K, Takahashi H, Nakashima M, Sosonkina N, Mapendano CK, Ghadami M, Nomura M, Liang DS, Miwa N, Kim DK, Garidkhuu A, Natsume N, Ohta T, Tomita H, Kaneko A, Kikuchi M: A SNP in the ABCC11 gene is the determinant of human earwax type. Nat Genet 2006, 38(3):324-330.
  • [32]Miura K, Yoshiura K, Miura S, Shimada T, Yamasaki K, Yoshida A, Nakayama D, Shibata Y, Niikawa N, Masuzaki H: A strong association between human earwax-type and apocrine colostrum secretion from the mammary gland. Hum Genet 2007, 121(5):631-633.
  • [33]Martin A, Saathoff M, Kuhn F, Max H, Terstegen L, Natsch A: A functional ABCC11 allele is essential in the biochemical formation of human axillary odor. J Invest Dermatol 2009, 130(2):529-40.
  • [34]Toyoda Y, Sakurai A, Mitani Y, Nakashima M, Yoshiura K, Nakagawa H, Sakai Y, Ota I, Lezhava A, Hayashizaki Y, Niikawa N, Ishikawa T: Earwax, osmidrosis, and breast cancer: why does one SNP (538G > A) in the human ABC transporter ABCC11 gene determine earwax type? FASEB J 2009, 23(6):2001-2013.
  • [35]Rarey M, Kramer B, Lengauer T, Klebe G: A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996, 261(3):470-489.
  • [36]Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML: Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983, 79:926-935.
  • [37]Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics. J Mol Graph 1996, 14(1):33-38. 27–38
  • [38]Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K: Scalable molecular dynamics with NAMD. J Comput Chem 2005, 26(16):1781-1802.
  • [39]Darden T, Perera L, Li L, Pedersen L: New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 1999, 7(3):R55-R60.
  文献评价指标  
  下载次数:49次 浏览次数:14次