期刊论文详细信息
BMC Genomics
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration
Richard C Boucher1  Wanda K O’Neal1  Lisa C Jones1  Elizabeth J Kelly1  Alessandra Livraghi-Butrico1  Hong Dang1  Yogesh Saini1 
[1] Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, 7011 Thurston Bowles Building, Chapel Hill, NC 27599-7248, USA
关键词: Airway surface liquid dehydration;    Lung development;    Gene expression profiling;    Mucus clearance defect;    Inflammation;    Pulmonary macrophage activation;    Scnn1b-Tg mice;   
Others  :  1140648
DOI  :  10.1186/1471-2164-15-726
 received in 2014-03-15, accepted in 2014-08-15,  发布年份 2014
PDF
【 摘 要 】

Background

Defects in airway mucosal defense, including decreased mucus clearance, contribute to the pathogenesis of human chronic obstructive pulmonary diseases. Scnn1b-Tg mice, which exhibit chronic airway surface dehydration from birth, can be used as a model to study the pathogenesis of muco-obstructive lung disease across developmental stages. To identify molecular signatures associated with obstructive lung disease in this model, gene expression analyses were performed on whole lung and purified lung macrophages collected from Scnn1b-Tg and wild-type (WT) littermates at four pathologically relevant time points. Macrophage gene expression at 6 weeks was evaluated in mice from a germ-free environment to understand the contribution of microbes to disease development.

Results

Development- and disease-specific shifts in gene expression related to Scnn1b over-expression were revealed in longitudinal analyses. While the total number of transgene-related differentially expressed genes producing robust signals was relatively small in whole lung (n = 84), Gene Set Enrichment Analysis (GSEA) revealed significantly perturbed biological pathways and interactions between normal lung development and disease initiation/progression. Purified lung macrophages from Scnn1b-Tg mice exhibited numerous robust and dynamic gene expression changes. The expression levels of Classically-activated (M1) macrophage signatures were significantly altered at post-natal day (PND) 3 when Scnn1b-Tg mice lung exhibit spontaneous bacterial infections, while alternatively-activated (M2) macrophage signatures were more prominent by PND 42, producing a mixed M1-M2 activation profile. While differentially-regulated, inflammation-related genes were consistently identified in both tissues in Scnn1b-Tg mice, there was little overlap between tissues or across time, highlighting time- and tissue-specific responses. Macrophages purified from adult germ-free Scnn1b-Tg mice exhibited signatures remarkably similar to non-germ-free counterparts, indicating that the late-phase macrophage activation profile was not microbe-dependent.

Conclusions

Whole lung and pulmonary macrophages respond independently and dynamically to local stresses associated with airway mucus stasis. Disease-specific responses interact with normal developmental processes, influencing the final state of disease in this model. The robust signatures observed in Scnn1b-Tg lung macrophages highlight their critical role in disease pathogenesis. These studies emphasize the importance of region-, cell-type-, and time-dependent analyses to fully dissect the natural history of disease and the consequences of disease on normal lung development.

【 授权许可】

   
2014 Saini et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325074536812.pdf 2617KB PDF download
Figure 2. 170KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Fahy JV, Dickey BF: Airway mucus function and dysfunction. N Engl J Med 2010, 363(23):2233-2247.
  • [2]Boucher RC: Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 2007, 13(6):231-240.
  • [3]Smith DJ, Gaffney EA, Blake JR: Modelling mucociliary clearance. Respir Physiol Neurobiol 2008, 163(1–3):178-188.
  • [4]James AL, Wenzel S: Clinical relevance of airway remodelling in airway diseases. Eur Respir J 2007, 30(1):134-155.
  • [5]Randell SH, Boucher RC: Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 2006, 35(1):20-28.
  • [6]Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD: Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16 s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2004, 42(11):5176-5183.
  • [7]Ellerman A, Bisgaard H: Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J 1997, 10(10):2376-2379.
  • [8]Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV, Cooper J, Sin DD, Mohn WW, Hogg JC: The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012, 185(10):1073-1080.
  • [9]Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC: Increased airway epithelial Na + absorption produces cystic fibrosis-like lung disease in mice. Nat Med 2004, 10(5):487-493.
  • [10]Livraghi-Butrico A, Grubb BR, Kelly EJ, Wilkinson KJ, Yang H, Geiser M, Randell SH, Boucher RC, O’Neal WK: Genetically determined heterogeneity of lung disease in a mouse model of airway mucus obstruction. Physiol Genomics 2012, 44(8):470-484.
  • [11]Wielputz MO, Eichinger M, Zhou Z, Leotta K, Hirtz S, Bartling SH, Semmler W, Kauczor HU, Puderbach M, Mall MA: In vivo monitoring of cystic fibrosis-like lung disease in mice by volumetric computed tomography. Eur Respir J 2011, 38(5):1060-1070.
  • [12]Mall MA, Harkema JR, Trojanek JB, Treis D, Livraghi A, Schubert S, Zhou Z, Kreda SM, Tilley SL, Hudson EJ, O'Neal WK, Boucher RC: Development of chronic bronchitis and emphysema in beta-epithelial Na + channel-overexpressing mice. Am J Respir Crit Care Med 2008, 177(7):730-742.
  • [13]Livraghi-Butrico A, Kelly EJ, Klem ER, Dang H, Wolfgang MC, Boucher RC, Randell SH, O’Neal WK: Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation. Mucosal Immunol 2012, 5(4):397-408.
  • [14]Amy RW, Bowes D, Burri PH, Haines J, Thurlbeck WM: Postnatal growth of the mouse lung. J Anat 1977, 124(Pt 1):131-151.
  • [15]Speer CP: Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology 2009, 95(4):353-361.
  • [16]Velten M, Heyob KM, Rogers LK, Welty SE: Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. J Appl Physiol (1985) 2010, 108(5):1347-1356.
  • [17]Svanes C, Sunyer J, Plana E, Dharmage S, Heinrich J, Jarvis D, de Marco R, Norback D, Raherison C, Villani S, Wjst M, Svanes K, Antó JM: Early life origins of chronic obstructive pulmonary disease. Thorax 2010, 65(1):14-20.
  • [18]Stocks J, Sonnappa S: Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2013, 7(3):161-173.
  • [19]Livraghi A, Grubb BR, Hudson EJ, Wilkinson KJ, Sheehan JK, Mall MA, O’Neal WK, Boucher RC, Randell SH: Airway and lung pathology due to mucosal surface dehydration in {beta}-epithelial Na + channel-overexpressing mice: role of TNF-{alpha} and IL-4R{alpha} signaling, influence of neonatal development, and limited efficacy of glucocorticoid treatment. J Immunol 2009, 182(7):4357-4367.
  • [20]Hussell T, Bell TJ: Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 2014, 14(2):81-93.
  • [21]Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T: A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 2008, 9(9):1074-1083.
  • [22]Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M: Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 1995, 13(3):257-261.
  • [23]Trojanek JB, Cobos-Correa A, Diemer S, Kormann M, Schubert SC, Zhou-Suckow Z, Agrawal R, Duerr J, Wagner CJ, Schatterny J, Hirtz S, Sommerburg O, Hartl D, Schultz C, Mall MA: Airway mucus obstruction triggers macrophage activation and MMP12-dependent emphysema. Am J Respir Cell Mol Biol 2014. [Epub ahead of print]
  • [24]Rowe SM, Jackson PL, Liu G, Hardison M, Livraghi A, Solomon GM, McQuaid DB, Noerager BD, Gaggar A, Clancy JP, O'Neal W, Sorscher EJ, Abraham E, Blalock JE: Potential role of high-mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med 2008, 178(8):822-831.
  • [25]Fleming TJ, Fleming ML, Malek TR: Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 1993, 151(5):2399-2408.
  • [26]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stati Soc Series B 1995, 57(1):289-300. 57 (1): 289–300
  • [27]de Hoon MJ, Imoto S, Nolan J, Miyano S: Open source clustering software. Bioinformatics 2004, 20(9):1453-1454.
  • [28]Saldanha AJ: Java treeview–extensible visualization of microarray data. Bioinformatics 2004, 20(17):3246-3248.
  • [29]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27(3):431-432.
  • [30]Mariani TJ, Reed JJ, Shapiro SD: Expression profiling of the developing mouse lung: insights into the establishment of the extracellular matrix. Am J Respir Cell Mol Biol 2002, 26(5):541-548.
  • [31]Zhang K, Shi ZM, Chang YN, Hu ZM, Qi HX, Hong W: The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene 2014, 547(1):1-9.
  • [32]Krishnan J, Mishra RK: Emerging trends of long non-coding RNAs in gene activation. FEBS J 2014, 281(1):34-45.
  • [33]Follettie MT, Ellis DK, Donaldson DD, Hill AA, Diesl V, DeClercq C, Sypek JP, Dorner AJ, Wills-Karp M: Gene expression analysis in a murine model of allergic asthma reveals overlapping disease and therapy dependent pathways in the lung. Pharmacogenomics J 2006, 6(2):141-152.
  • [34]Munitz A, Brandt EB, Mingler M, Finkelman FD, Rothenberg ME: Distinct roles for IL-13 and IL-4 via IL-13 receptor alpha1 and the type II IL-4 receptor in asthma pathogenesis. Proc Natl Acad Sci U S A 2008, 105(20):7240-7245.
  • [35]Adkins B, Bu Y, Vincek V, Guevara P: The primary responses of murine neonatal lymph node CD4+ cells are Th2-skewed and are sufficient for the development of Th2-biased memory. Clin Dev Immunol 2003, 10(1):43-51.
  • [36]Adkins B: Development of neonatal Th1/Th2 function. Int Rev Immunol 2000, 19(2–3):157-171.
  • [37]Groneck P, Gotze-Speer B, Oppermann M, Eiffert H, Speer CP: Association of pulmonary inflammation and increased microvascular permeability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates. Pediatrics 1994, 93(5):712-718.
  • [38]Snyder JC, Reynolds SD, Hollingsworth JW, Li Z, Kaminski N, Stripp BR: Clara cells attenuate the inflammatory response through regulation of macrophage behavior. Am J Respir Cell Mol Biol 2010, 42(2):161-171.
  • [39]Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, Deswarte K, Malissen B, Hammad H, Lambrecht BN: Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 2013, 210(10):1977-1992.
  • [40]Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, García-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38(4):792-804.
  • [41]Chowdhary R, Tan SL, Pavesi G, Jin J, Dong D, Mathur SK, Burkart A, Narang V, Glurich I, Raby BA, Weiss ST, Wong L, Liu JS, Bajic VB: A database of annotated promoters of genes associated with common respiratory and related diseases. Am J Respir Cell Mol Biol 2012, 47(1):112-119.
  • [42]Steiling K, van den Berge M, Hijazi K, Florido R, Campbell J, Liu G, Xiao J, Zhang X, Duclos G, Drizik E, Si H, Perdomo C, Dumont C, Coxson HO, Alekseyev YO, Sin D, Pare P, Hogg JC, McWilliams A, Hiemstra PS, Sterk PJ, Timens W, Chang JT, Sebastiani P, O'Connor GT, Bild AH, Postma DS, Lam S, Spira A, Lenburg ME: A dynamic bronchial airway gene expression signature of chronic obstructive pulmonary disease and lung function impairment. Am J Respir Crit Care Med 2013, 187(9):933-942.
  • [43]Chen G, Korfhagen TR, Xu Y, Kitzmiller J, Wert SE, Maeda Y, Gregorieff A, Clevers H, Whitsett JA: SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest 2009, 119(10):2914-2924.
  • [44]Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O’Connor TP, Crystal RG: Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol 2009, 183(4):2867-2883.
  • [45]Mosser DM, Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008, 8(12):958-969.
  • [46]Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity 2010, 32(5):593-604.
  • [47]Murray PJ, Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011, 11(11):723-737.
  • [48]Mitchell C, Provost K, Niu N, Homer R, Cohn L: IFN-gamma acts on the airway epithelium to inhibit local and systemic pathology in allergic airway disease. J Immunol 2011, 187(7):3815-3820.
  • [49]Daan De Boer J, Roelofs JJ, De Vos AF, De Beer R, Schouten M, Hommes TJ, Hoogendijk AJ, De Boer OJ, Stroo I, van der Zee JS, Veer CV, van der Poll T: Lipopolysaccharide inhibits Th2 lung inflammation induced by house dust mite allergens in mice. Am J Respir Cell Mol Biol 2013, 48(3):382-389.
  • [50]Adkins B, Leclerc C, Marshall-Clarke S: Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004, 4(7):553-564.
  • [51]Nelson MP, Christmann BS, Werner JL, Metz AE, Trevor JL, Lowell CA, Steele C: IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina. J Immunol 2011, 186(4):2372-2381.
  • [52]Reece JJ, Siracusa MC, Scott AL: Innate immune responses to lung-stage helminth infection induce alternatively activated alveolar macrophages. Infect Immun 2006, 74(9):4970-4981.
  • [53]Kim EY, Battaile JT, Patel AC, You Y, Agapov E, Grayson MH, Benoit LA, Byers DE, Alevy Y, Tucker J, Swanson S, Tidwell R, Tyner JW, Morton JD, Castro M, Polineni D, Patterson GA, Schwendener RA, Allard JD, Peltz G, Holtzman MJ: Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 2008, 14(6):633-640.
  • [54]Cocco RE, Ucker DS: Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposure. Mol Biol Cell 2001, 12(4):919-930.
  • [55]Murdoch C, Muthana M, Lewis CE: Hypoxia regulates macrophage functions in inflammation. J Immunol 2005, 175(10):6257-6263.
  • [56]Souza DG, Vieira AT, Soares AC, Pinho V, Nicoli JR, Vieira LQ, Teixeira MM: The essential role of the intestinal microbiota in facilitating acute inflammatory responses. J Immunol 2004, 173(6):4137-4146.
  文献评价指标  
  下载次数:23次 浏览次数:6次