期刊论文详细信息
BMC Evolutionary Biology
A genetic polymorphism evolving in parallel in two cell compartments and in two clades
Eddie Wang2  Baiqing Wang3  Richard R Hudson1  Ward B Watt4 
[1] Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA;Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 0213, USA;Department of Biology, Stanford University, Stanford, CA 94305-5020, USA;Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
关键词: Splice variation;    Selection hypothesis;    Phosphoenolpyruvate carboxykinase;    Parallel evolution;    Neutral null hypothesis;    Intramolecular bond variation;    Glycolysis;    Coalescent simulation;    Amino acid polymorphism;   
Others  :  1130388
DOI  :  10.1186/1471-2148-13-9
 received in 2012-07-24, accepted in 2012-12-12,  发布年份 2013
PDF
【 摘 要 】

Background

The enzyme phosphoenolpyruvate carboxykinase, PEPCK, occurs in its guanosine-nucleotide-using form in animals and a few prokaryotes. We study its natural genetic variation in Colias (Lepidoptera, Pieridae). PEPCK offers a route, alternative to pyruvate kinase, for carbon skeletons to move between cytosolic glycolysis and mitochondrial Krebs cycle reactions.

Results

PEPCK is expressed in both cytosol and mitochondrion, but differently in diverse animal clades. In vertebrates and independently in Drosophila, compartment-specific paralogous genes occur. In a contrasting expression strategy, compartment-specific PEPCKs of Colias and of the silkmoth, Bombyx, differ only in their first, 5, exons; these are alternatively spliced onto a common series of following exons. In two Colias species from distinct clades, PEPCK sequence is highly variable at nonsynonymous and synonymous sites, mainly in its common exons. Three major amino acid polymorphisms, Gly 335 ↔ Ser, Asp 503 ↔ Glu, and Ile 629 ↔ Val occur in both species, and in the first two cases are similar in frequency between species. Homology-based structural modelling shows that the variants can alter hydrogen bonding, salt bridging, or van der Waals interactions of amino acid side chains, locally or at one another’s sites which are distant in PEPCK’s structure, and thus may affect its enzyme function. We ask, using coalescent simulations, if these polymorphisms’ cross-species similarities are compatible with neutral evolution by genetic drift, but find the probability of this null hypothesis is 0.001 ≤ P ≤ 0.006 under differing scenarios.

Conclusion

Our results make the null hypothesis of neutrality of these PEPCK polymorphisms quite unlikely, but support an alternative hypothesis that they are maintained by natural selection in parallel in the two species. This alternative can now be justifiably tested further via studies of PEPCK genotypes’ effects on function, organismal performance, and fitness. This case emphasizes the importance, for evolutionary insight, of studying gene-specific mechanisms affected by natural genetic variation as an essential complement to surveys of such variation.

【 授权许可】

   
2013 Watt et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226220151195.pdf 1992KB PDF download
Figure 8. 50KB Image download
Figure 7. 45KB Image download
Figure 5. 109KB Image download
Figure 6. 58KB Image download
Figure 4. 307KB Image download
Figure 3. 55KB Image download
Figure 2. 36KB Image download
Figure 1. 9KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 6.

Figure 5.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Yang J, Kalhan SC, Hanson RW: What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem 2009, 284:27025-27029.
  • [2]Hochachka PW, Somero GN: Biochemical adaptation. New Jersey: Princeton University Press; 1984.
  • [3]Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, Cabrera ME, Hagen DR, Utter CB, Baghdy Y, Johnson DH, Wilson DL, Kirwan JP, Kalhan SC, Hanson RW: Overexpression of the cytosolic form of phosphenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 2007, 282:32844-32855.
  • [4]Wheat CW, Watt WB, Pollock DD, Schulte PM: From DNA to fitness differences: sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI). Mol Biol Evol 2006, 23:499-512.
  • [5]Wang B, Watt WB, Aakre C, Hawthorne N: Emergence of complex haplotypes from microevolutionary variation in sequence and structure of Colias phosphoglucose isomerase. J Mol Evol 2009, 68:433-447.
  • [6]Papanicolaou A, Gebauer-Jung S, Blaxter ML, McMillan WO, Jiggins CD: ButterflyBase: a platform for lepidopteran genomics. Nucl Acids Res 2008, 36:D582-D587. http://www.butterflybase.org webcite
  • [7]Hall T: BioEdit: biological sequence alignment editor. 2004. URL:http://www.mbio.ncsu.edu/BioEdit/bioedit.html webcite
  • [8]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452. http://www.ub.es/dnasp webcite
  • [9]Stephens M, Donelly P: A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Amer Journ Hum Genet 2003, 73:1162-1169.
  • [10]Stephens M, Smith N, Donelly P: A new statistical method for haplotype reconstruction from population data. Amer Journ Hum Genet 2001, 68:978-989.
  • [11]Duan J, Li R, Cheng D, Fan W, Zhu X, Chang T, Wu Y, Wang J, Mita K, Xiang Z, Xia Q: SilkDB 2.0: a platform for silkworm (Bombyx mori) genome biology. Nucl Acids Res 2010, 38:D453-D456. http://www.silkworm.genomics.org. cn/silkdb/ webcite
  • [12]McQuilton P, St Pierre SE, Thurmond J, FlyBase Consortium: FlyBase 101 – the basics of navigating FlyBase. Nucl Acids Res 2012, 40(Database issue):D706-D714. PMID: 22127867] [NAR40D: D706] URL: http://www.flybase.org webcite
  • [13]Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucl Acids Res 2011, 39(Database issue):D32-D37. http://www.ncbi.nlm.nih.gov/genbank/ webcite
  • [14]Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2007, 2:953-971. http://www.cbs.dtu.dk webcite
  • [15]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704. http://www.atgc.lirmm.fr/phyml/ webcite
  • [16]Felsenstein J: PHYLogeny Inference Package, v.3.63. 2005. URL: http://evolution.gs.washington.edu/phylip.html webcite
  • [17]Ginalski K, Elofsson A, Fischer D, Rychlewski L: 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 2003, 19:1015-1018. http://meta.bioinfo.pl/ webcite
  • [18]Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucl Acids Res 2000, 28:235-242. http://www.pdb.org webcite
  • [19]Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Earmian D, Shen M, Pieper U, Sali A: Comparative protein structure modelling using Modeller. Curr Prot Bioinform 2006, 5.6:1-30. http://salilab.org/modeller/ webcite
  • [20]Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: an automated protein homology-modelling server. Nucl Acids Res 2003, 31:3381-3385. http://swissmodel.expasy.org webcite
  • [21]Aich S, Delbaere LTJ: Phylogenetic study of the evolution of PEP-carboxykinase. Evol Bioinform 2007, 3:333-340.
  • [22]Steinke D, Hoegg S, Brinkmann H, Meyer A: Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates. BMC Biology 2006, 4:16. BioMed Central Full Text
  • [23]Roise D, Schatz G: Mitochondrial presequences. J Biol Chem 1988, 268:4509-4511.
  • [24]Moriyama EN, Powell JR: Intraspecific nuclear DNA polymorphism in Drosophila. Mol Biol Evol 1996, 13:261-277.
  • [25]Hudson RR, Kaplan NL: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985, 111:147-164.
  • [26]Goldstein A: Biostatistics. New York: Macmillan; 1964.
  • [27]Sokal RR, Rohlf FJ: Biometry. Edition 3 edition. New York: W.H. Freeman; 1995.
  • [28]Watterson GA: On the number of segregating sites in genetical models without recombination. Theor Pop Biol 1975, 10:256-276.
  • [29]Kimura M, Ohta T: Theoretical aspects of population genetics. Princeton NJ: Princeton University Press; 1971.
  • [30]Holyoak T, Sullivan SM, Nowak T: Structural insights into the mechanism of PEPCK catalysis. Biochemistry 2006, 45:8254-8263.
  • [31]Sullivan SM, Holyoak T: Structure of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid. Biochemistry 2007, 46:10078-10088.
  • [32]Carlson GM, Holyoak T: Structural insights into the mechanism of PEPCK catalysis. J Biol Chem 2009, 284:27037-27041.
  • [33]Li A, Nussinov R: A set of van der Waals and Coulombic radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking. Proteins 1998, 32:111-127.
  • [34]Aé SA: A study of hybrids in Colias (Lepidoptera, Pieridae). Evolution 1959, 13:64-88.
  • [35]Wheat CW, Watt WB: A mitochondrial-DNA-based phylogeny for some evolutionary-genetic model species of Colias butterflies. Mol Phylog Evol 2008, 47:893-902.
  • [36]Hudson RR: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 2002, 18:337-338.
  • [37]Klots AB: A field guide to the butterflies of North America, east of the Great Plains. New York: Houghton Mifflin; 1951.
  • [38]Wang B: Introgression and genomic differentiation in sympatric hybridizing Colias butterflies. Ann Arbor, MI: University Microfilms; 2005. [Ph.D. thesis, University of Massachusetts at Amherst]
  • [39]Watt WB: Adaptation, constraint, and neutrality: mechanistic case studies with butterflies and their general implications. In The evolution of population biology. Edited by Singh R, Uyenoyama M. Cambridge, UK: Cambridge University Press; 2004:275-296.
  • [40]Wheat CW, Watt WB, Boutwell CL: A reconnaissance of population genetic variation in arctic and subarctic sulfur butterflies (Colias: Lepidoptera, Pieridae). Canad J Zool 2005, 83:1614-1623.
  • [41]Watt WB, Donohue K, Carter PA: Adaptation at specific loci. VI. Divergence vs. parallelism of polymorphic allozymes in molecular function and fitness-component effects among Colias species (Lepidoptera, Pieridae). Mol Biol Evol 1996, 13:699-709.
  • [42]Watt WB, Dean AM: Molecular-functional studies of adaptive genetic variation in prokaryotes and eukaryotes. Annu Rev Genet 2000, 34:593-622.
  • [43]Dobzhansky T: Genetics of the evolutionary process. New York: Columbia University Press; 1970.
  • [44]Tian D, Araki H, Stahl E, Bergelson J, Kreitman M: Signature of balancing selection in Arabidopsis. Proc Nat’l Acad Sci USA 2002, 99:11525-11530.
  • [45]Hughes AL, Nei M: Maintenance of MHC polymorphism. Nature 1992, 355:402-403.
  • [46]Hedrick PW, Kim TJ: Genetics of complex polymorphisms: parasites and maintenance of the major histocompatibility complex variation. In Evolutionary genetics: from molecules to morphology. Edited by Singh RS, Krimbas CB. Cambridge, UK: Cambridge University Press; 2000:204-234.
  • [47]Uyenoyama M, Takebayashi N: Genus-specific diversification of mating types. In The evolution of population biology. Edited by Singh R, Uyenoyama M. Cambridge, UK: Cambridge University Press; 2004:254-271.
  • [48]Carter PA, Watt WB: Adaptation at specific loci. V. Metabolically adjacent enzyme loci may have very distinct experiences of selective pressures. Genetics 1988, 119:913-924.
  • [49]Verrelli BC, Eanes WF: Clinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster. Genetics 2001, 157:1649-1663.
  • [50]Verrelli BC, Eanes WF: The functional impact of PGM amino acid polymorphism on glycogen content in Drosophila melanogaster. Genetics 2001, 159:201-210.
  • [51]Schuster S, Fell DA, Dandekar T: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotech 2000, 18:326-332.
  • [52]Kaplan RS, Mayer JA, Wolff DO: The mitochondrial tricarboxylate transport protein. J Biol Chem 1993, 268:13682-13690.
  • [53]Friedlander TP, Regier JC, Mitter C, Wagner DL: A nuclear gene for higher level phylogenetics: phosphoenolpyruvate carboxykinase tracks Mesozoic-age divergences within Lepidoptera (Insecta). Mol Biol Evol 1996, 13:594-604.
  • [54]Sella G, Petrov DA, Przeworski M, Andolfatto P: Pervasive natural selection in the Drosophila genome? PLoS Genet 2009, 5:e1000495.
  • [55]Chakravarti A: Genomics is not enough. Science 2011, 344:15.
  • [56]Karasov T, Messer PW, Petrov DA: Evidence that adaptation in Drosophila is not limited by mutation at single sites. PLoS Genet 2010, 6:e1000924.
  • [57]Suhre K, Shin S, Petersen A, Mohney RP, Meredith D, Wigele B, Altmaier E, Deloukas P, Erdmann J, Grundberg E, Hammond CJ, de Angelis MH, Kastenmuller G, Kottgen A, Kronenberg F, Mangino M, Meisinger C, Meitinger T, Mewes H, Milburn MV, Prehn C, Raffler J, Ried JS, Romisch-Margl W, Samani NJ, Small KS, Wichmann H, Zhai G, Illig T, CARDIoGRAM, et al.: Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011, 477:54-60.
  • [58]Anderson JT, Willis JH, Mitchell-Olds T: Evolutionary genetics of plant adaptation. Trends Genet 2011, 27:258-266.
  • [59]Whitehead AN: The aims of education. New York: Macmillan; 1929.
  • [60]Judson HF: The eighth day of creation. Expanded edition. Plainview, NY: Cold Spring Harbor Laboratory Press; 1996.
  • [61]Mayr E: Some thoughts on the history of the evolutionary synthesis. In The evolutionary synthesis. Edited by Mayr E, Provine WB. Cambridge, MA: Harvard Univ. Press; 1980:1-48.
  • [62]Watt WB: Avoiding paradigm-based limits to knowledge of evolution. Evol Biol 2000, 32:73-96.
  • [63]Feder ME, Mitchell-Olds T: Ecological and evolutionary functional genomics. Nature Rev Genet 2003, 4:649-655.
  • [64]Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T: Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science 2011, 334:1512-1516.
  • [65]Feder ME, Watt WB: Functional biology of adaptation. In Genes in ecology. Edited by Berry RJ, Crawford TJ, Hewitt GM. Cambridge, UK: Cambridge University Press; 1992:365-392.
  • [66]Storz JF, Wheat CW: Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 2010, 64:2489-2509.
  • [67]Barrett RDH, Hoekstra HE: Molecular spandrels: tests of adaptation at the genetic level. Nature Rev Genet 2011, 12:767-780.
  文献评价指标  
  下载次数:37次 浏览次数:24次