期刊论文详细信息
BMC Microbiology
Shewanella oneidensis Hfq promotes exponential phase growth, stationary phase culture density, and cell survival
Brett J Pellock1  Jessica M Osborn1  Katherine E Douglas1  Taylor Mezoian1  Zachary Sexton1  Nicholas Q Mazzucca1  Matthew T Goulet1  Taylor M Hunt1  Meghan L Keane1  Christopher M Brennan1 
[1] Department of Biology, Providence College, Providence, RI, USA
关键词: Stationary phase survival;    Oxidative stress;    Metal reduction;    Hfq;    Shewanella oneidensis;   
Others  :  1144423
DOI  :  10.1186/1471-2180-13-33
 received in 2012-11-09, accepted in 2013-01-21,  发布年份 2013
PDF
【 摘 要 】

Background

Hfq is an RNA chaperone protein that has been broadly implicated in sRNA function in bacteria. Here we describe the construction and characterization of a null allele of the gene that encodes the RNA chaperone Hfq in Shewanella oneidensis strain MR-1, a dissimilatory metal reducing bacterium.

Results

Loss of hfq in S. oneidensis results in a variety of mutant phenotypes, all of which are fully complemented by addition of a plasmid-borne copy of the wild type hfq gene. Aerobic cultures of the hfq∆ mutant grow more slowly through exponential phase than wild type cultures, and hfq∆ cultures reach a terminal cell density in stationary phase that is ~2/3 of that observed in wild type cultures. We have observed a similar growth phenotype when the hfq∆ mutant is cultured under anaerobic conditions with fumarate as the terminal electron acceptor, and we have found that the hfq∆ mutant is defective in Cr(VI) reduction. Finally, the hfq∆ mutant exhibits a striking loss of colony forming units in extended stationary phase and is highly sensitive to oxidative stress induced by H2O2 or methyl viologen (paraquat).

Conclusions

The hfq mutant in S. oneidensis exhibits pleiotropic phenotypes, including a defect in metal reduction. Our results also suggest that hfq mutant phenotypes in S. oneidensis may be at least partially due to increased sensitivity to oxidative stress.

【 授权许可】

   
2013 Brennan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330134106611.pdf 3190KB PDF download
Figure 4. 105KB Image download
Figure 3. 155KB Image download
Figure 2. 81KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Geissmann TA, Touati D: Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J 2004, 23(2):396-405.
  • [2]Gottesman S: The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 2004, 58:303-328.
  • [3]Moller T, Franch T, Hojrup P, Keene DR, Bachinger HP, Brennan RG, Valentin-Hansen P: Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 2002, 9(1):23-30.
  • [4]Panja S, Woodson SA: Hexamer to monomer equilibrium of E. coli Hfq in solution and its impact on RNA annealing. J Mol Biol 2012, 417(5):406-412.
  • [5]Tsui HC, Leung HC, Winkler ME: Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 1994, 13(1):35-49.
  • [6]Sittka A, Pfeiffer V, Tedin K, Vogel J: The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 2007, 63(1):193-217.
  • [7]Ding Y, Davis BM, Waldor MK: Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol 2004, 53(1):345-354.
  • [8]Muffler A, Traulsen DD, Fischer D, Lange R, Hengge-Aronis R: The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigmaS subunit of RNA polymerase in Escherichia coli. J Bacteriol 1997, 179(1):297-300.
  • [9]Myers CR, Nealson KH: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240(4857):1319-1321.
  • [10]Nealson KH, Saffarini D: Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 1994, 48:311-343.
  • [11]Lovley DR: Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 2006, 4(7):497-508.
  • [12]Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, et al.: Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 2002, 20(11):1118-1123.
  • [13]Becker A, Schmidt M, Jager W, Puhler A: New gentamicin-resistance and lacZ promoter-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene 1995, 162(1):37-39.
  • [14]Alting-Mees MA, Short JM: pBluescript II: gene mapping vectors. Nucleic Acids Res 1989, 17(22):9494.
  • [15]Edwards RA, Keller LH, Schifferli DM: Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 1998, 207(2):149-157.
  • [16]Miller VL, Mekalanos JJ: A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988, 170(6):2575-2583.
  • [17]Tsui HC, Feng G, Winkler ME: Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J Bacteriol 1996, 178(19):5719-5731.
  • [18]Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166(1):175-176.
  • [19]Simon R, Priefer U, Puhler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotech 1983, 1:784-791.
  • [20]Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G: The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 2002, 9(1):11-22.
  • [21]Urone PF: Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents. Anal Chem 1955, 27:1354-1355.
  • [22]Dukan S, Nystrom T: Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 1998, 12(21):3431-3441.
  • [23]Navarro Llorens JM, Tormo A, Martinez-Garcia E: Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010, 34(4):476-495.
  • [24]Geng J, Song Y, Yang L, Feng Y, Qiu Y, Li G, Guo J, Bi Y, Qu Y, Wang W, et al.: Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One 2009, 4(7):e6213.
  • [25]Guisbert E, Rhodius VA, Ahuja N, Witkin E, Gross CA: Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli. J Bacteriol 2007, 189(5):1963-1973.
  • [26]Sonnleitner E, Schuster M, Sorger-Domenigg T, Greenberg EP, Blasi U: Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 2006, 59(5):1542-1558.
  • [27]Oliver JD: The viable but nonculturable state in bacteria. J Microbiol 2005, 43(Spec No):93-100.
  • [28]Lease RA, Cusick ME, Belfort M: Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad Sci USA 1998, 95(21):12456-12461.
  • [29]Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S: DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci USA 1998, 95(21):12462-12467.
  • [30]Majdalani N, Hernandez D, Gottesman S: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 2002, 46(3):813-826.
  • [31]Zhang A, Altuvia S, Tiwari A, Argaman L, Hengge-Aronis R, Storz G: The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 1998, 17(20):6061-6068.
  • [32]Vogel J, Luisi BF: Hfq and its constellation of RNA. Nat Rev Microbiol 2011, 9(8):578-589.
  • [33]Yang Y, McCue LA, Parsons AB, Feng S, Zhou J: The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control. BMC Microbiol 2010, 10:264. BioMed Central Full Text
  文献评价指标  
  下载次数:74次 浏览次数:30次