期刊论文详细信息
BMC Genomics
Mapping in the era of sequencing: high density genotyping and its application for mapping TYLCV resistance in Solanum pimpinellifolium
Sjaak van Heusden2  Yuling Bai3  Richard GF Visser2  Arnaud Bovy2  Yury Tikunov2  Richard Finkers2  Myluska Caro1  Marcela Víquez-Zamora1 
[1] Graduate School Experimental Plant Sciences, Wageningen 6708 PB, the Netherlands;Centre for Biosystems Genomics, P.O. Box 98, Wageningen, AB 6700, the Netherlands;Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, Wageningen, AJ 6700, the Netherlands
关键词: Genotype by sequencing (GBS);    Hexose;    Flavonoids;    TYLCV;    In silico;    S. pimpinellifolium;    SNPs;   
Others  :  1122621
DOI  :  10.1186/1471-2164-15-1152
 received in 2014-08-18, accepted in 2014-12-12,  发布年份 2014
PDF
【 摘 要 】

Background

A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS).

Results

A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.

This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides.

Conclusions

The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.

【 授权许可】

   
2014 Víquez-Zamora et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150214023929885.pdf 1409KB PDF download
Figure 3. 80KB Image download
Figure 2. 60KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]The Tomato Genome Consortium: The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485(7400):635-641.
  • [2]Grandillo S, Tanksley SD: Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 1996, 92(8):957-965.
  • [3]Chen FQ, Foolad MR: A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 1999, 42(1):94-103.
  • [4]Lippman Z, Tanksley SD: Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 2001, 158(1):413-422.
  • [5]Doganlar S, Frary A, Ku HM, Tanksley SD: Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 2002, 45(6):1189-1202.
  • [6]Sharma A, Zhang L, Nio-Liu D, Ashrafi H, Foolad MR: A solanum lycopersicum solanum pimpinellifolium linkage map of tomato displaying genomic locations of R-genes, RGAs, and candidate resistance/defense-response ESTs. International Journal of Plant Genomics 2008, 2008:1-18.
  • [7]Ashrafi H, Kinkade M, Foolad MR: A new genetic linkage map of tomato based on a Solanum lycopersicum × S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 2009, 52(11):935-956.
  • [8]Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis D: Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 2012, 7(7):e40563.
  • [9]Broman KW: The genomes of recombinant inbred lines. Genetics 2005, 169(2):1133-1146.
  • [10]Paran I, Goldman I, Tanksley SD, Zamir D: Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 1995, 90(3–4):542-548.
  • [11]Mézard C: Meiotic recombination hotspots in plants. Biochem Soc Trans 2006, 34(4):531-534.
  • [12]Víquez-Zamora M, Vosman B, van de Geest H, Bovy A, Visser RGF, Finkers R, van Heusden AW: Tomato breeding in the genomics era: Insights from a SNP array. BMC Genomics 2013, 14(1):354. BioMed Central Full Text
  • [13]Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B: High-throughput genotyping by whole-genome resequencing. Genome Res 2009, 19(6):1068-1076.
  • [14]Causse M, Desplat N, Pascual L, Le Paslier MC, Sauvage C, Bauchet G, Bérard A, Bounon R, Tchoumakov M, Brunel D, Bouchet J: Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 2013, 14(1):791. BioMed Central Full Text
  • [15]Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham RCHJ, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, te Lintel HB, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden AW, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S: Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant Journal 2014, 80(1):134-148.
  • [16]Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I: Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 2009, 119(3):519-530.
  • [17]Pico B, Ferriol M, Diez MJ, Vinals FN: Agroinoculation methods to screen wild Lycopersicon for resistance to Tomato yellow leaf curl virus. J Plant Pathol 2001, 83(3):215-220.
  • [18]Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, Edwards JD, Bai Y: The Tomato Yellow Leaf Curl Virus Resistance Genes Ty-1 and Ty-3 Are Allelic and Code for DFDGD-Class RNA–Dependent RNA Polymerases. PLoS Genet 2013, 9(3):e1003399.
  • [19]Banerjee MK, Kalloo MK: Sources and inheritance of resistance to leaf curl virus in Lycopersicon. Theor Appl Genet 1987, 73(5):707-710.
  • [20]Kasrawi MA, Suwwan MA, Mansour A: Sources of resistance to tomato-yellow-leaf-curl-virus (TYLCV) in Lycopersicon species. Euphytica 1988, 37(1):61-64.
  • [21]Chagué V, Mercier J, Guenard M, De Courcel A, Vedel F: Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 1997, 95(4):671-677.
  • [22]Pico B, Sifres A, Elia M, Díez MJ, Nuez F: Searching for new resistance sources to tomato yellow leaf curl virus within a highly variable wild Lycopersicon genetic pool. Acta Physiologiae Plantarum 2000, 22(3):344-350.
  • [23]Pilowsky M, Cohen S: Screening additional wild tomatoes for resistance to the whitefly-borne tomato yellow leaf curl virus. Acta Physiologiae Plantarum 2000, 22(3):351-353.
  • [24]PérezdeCastro A, Díez MJ, Nuez F: Inheritance of Tomato yellow leaf curl virus resistance derived from Solanum pimpinellifolium UPV16991. Plant Disease 2007, 91(7):879-885.
  • [25]Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP: Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance. Edited by Czosnek H. Springer Netherlands; 2007:343-362.
  • [26]Voorrips RE, Verkerke W, Finkers R, Jongerius R, Kanne J: Inheritance of taste components in tomato. Acta Physiologiae Plantarum 2000, 22(3):259-261.
  • [27]Khan N, Kazmi RH, Willems LAJ, van Heusden AW, Ligterink W, Hilhorst HWM: Exploring the Natural Variation for Seedling Traits and Their Link with Seed Dimensions in Tomato. PLoS One 2012, 7(8):e43991.
  • [28]Stewart CN Jr, Via LE: A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 1993, 14(5):748-750.
  • [29]Kabelka E, Franchino B, Francis DM: Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 2002, 92(5):504-510.
  • [30]Illumina: Infinium® HD Assay: Ultra Protocol Guide. California, USA: ©Illumina, Inc; 2009:1-224. Catalog #WG-901-4007
  • [31]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [32]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.
  • [33]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20(9):1297-1303.
  • [34]Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH: JBrowse: A next-generation genome browser. Genome Res 2009, 19(9):1630-1638.
  • [35]Chibon P, Schoof H, Visser RG, Finkers R: Marker2sequence, mine your QTL regions for candidate genes. Bioinformatics 2012, 28(14):1921-1922.
  • [36]Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Visser RG, Scott JW, Bai Y: Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty‒1. Plant J 2011, 68(6):1093-1103.
  • [37]Friedmann M, Lapidot M, Cohen S, Pilowsky M: A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J Am Soc Horticultural Sci 1998, 123:1004-1007.
  • [38]De Vos RCH, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Hall RD: Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2007, 2(4):778-791.
  • [39]Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR: Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 2006, 1(1):387-396.
  • [40]Tikunov Y, Lommen A, De Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG: A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 2005, 139(3):1125-1137.
  • [41]Tikunov YM, de Vos RC, Paramás AMG, Hall RD, Bovy AG: A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from tomato fruit discovered using a metabolic data fusion approach. Plant Physiol 2010, 152(1):55-70.
  • [42]Tikunov YM, Laptenok S, Hall RD, Bovy A, de Vos RCH: MSClust: A tool for unsupervised mass spectra extraction of chromatography-mass spectrometry ion-wise aligned data. Metabolomics 2012, 8(4):714-718.
  • [43]Van Ooijen JW: Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 2011, 93(5):343-349.
  • [44]Voorrips RE: Mapchart: Software for the graphical presentation of linkage maps and QTLs. J Heredity 2002, 93(1):77-78.
  • [45]Kadirvel P, de la Peña R, Schafleitner R, Huang S, Geethanjali S, Kenyon L, Tsai W, Hanson P: Mapping of QTLs in tomato line FLA456 associated with resistance to a virus causing tomato yellow leaf curl disease. Euphytica 2013, 190(2):297-308.
  • [46]Yang X, Caro M, Hutton SF, Scott JW, Guo Y, Wang X, Rashid MH, Szinay D, de Jong H, Visser RGF, et al.: Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding 2014, 34:749-760.
  • [47]Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang J: Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 2008, 180(3):1307-1317.
  • [48]Tam SM, Hays JB, Chetelat RT: Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato. Theor Appl Genet 2011, 123(8):1445-1458.
  • [49]Keurentjes JJ, Bentsink L, Alonso-Blanco C, Hanhart CJ, Blankestijn-De Vries H, Effgen S, Vreugdenhil D, Koornneef M: Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 2007, 175(2):891-905.
  • [50]Butterbach P, Verlaan MG, Dullemans AM, Lohuis D, Visser RGF, Bai Y, Kormelink R: Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci 2014, 111(35):12942-12947.
  • [51]Hutton SF: Fine-Mapping and Cloning of Ty-1 and Ty-3; and Mapping of a New TYLCV Resistance Locus, "Ty-6" [abstract]. Tomato Breeders Round Table 2013: http://tgc.ifas.ufl.edu/2013/abstracts/SamOrchardAbstract%20TBRT%202013.pdf webcite
  • [52]Eybishtz A, Peretz Y, Sade D, Akad F, Czosnek H: Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Mol Biol 2009, 71(1–2):157-171.
  • [53]Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H: Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta 2010, 231(3):537-548.
  • [54]Bol J, Linthorst H, Cornelissen B: Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 1990, 28(1):113-138.
  • [55]Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, Rosas-Díaz T, Lozano-Durán R: Discovering host genes involved in the infection by the tomato yellow leaf curl virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses 2013, 5(3):998-1022.
  • [56]Gorovits R, Moshe A, Ghanim M, Czosnek H: Recruitment of the host plant heat shock protein 70 by tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One 2013, 8(7):e70280.
  • [57]Sade D, Brotman Y, Eybishtz A, Cuadros-Inostroza Á, Fernie AR, Willmitzer L, Czosnek H: Involvement of the hexose transporter gene LeHT1 and of sugars in resistance of tomato to tomato yellow leaf curl virus. Mol Plant 2013, 6(5):1707-1710.
  • [58]Sade D, Shriki O, Cuadros-Inostroza A, Tohge T, Semel Y, Haviv Y, Willmitzer L, Fernie AR, Czosnek H, Brotman Y: Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 2014, 1-17. http://link.springer.com/article/10.1007/s11306-014-0670-x webcite
  文献评价指标  
  下载次数:26次 浏览次数:13次