期刊论文详细信息
BMC Microbiology
Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans
Sirkka E. Asikainen1  Radhika G. Bhardwaj1  Maribasappa Karched1 
[1] General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait
关键词: Autoaggregation;    Fusobacterium nucleatum;    Aggregatibacter actinomycetemcomitans;    Granulicatella;    Biofilm;    Coaggregation;   
Others  :  1221682
DOI  :  10.1186/s12866-015-0439-z
 received in 2015-03-18, accepted in 2015-05-08,  发布年份 2015
PDF
【 摘 要 】

Background

Members of fastidious Granulicatella and Aggregatibacter genera belong to normal oral flora bacteria that can cause serious infections, such as infective endocarditis. Aggregatibacter actinomycetemcomitans has long been implicated in aggressive periodontitis, whereas DNA-based methods only recently showed an association between Granulicatella spp. and dental diseases. As bacterial coaggregation is a key phenomenon in the development of oral and nonoral multispecies bacterial communities it would be of interest knowing coaggregation pattern of Granulicatella species with A. actinomycetemcomitans in comparison with the multipotent coaggregator Fusobacterium nucleatum.

The aim was to investigate coaggregation and biofilm formation of Granulicatella elegans and Granulicatella adiacens with A. actinomycetemcomitans and F. nucleatum strains.

Results

F. nucleatum exhibited significantly (p < 0.05) higher autoaggregation than all other test species, followed by A. actinomycetemcomitans SA269 and G. elegans. A. actinomycetemcomitans CU1060 and G. adiacens did not autoaggregate. G. elegans with F. nucleatum exhibited significantly (p < 0.05) higher coaggregation than most others, but failed to grow as biofilm together or separately. With F. nucleatum as partner, A. actinomycetemcomitans strains SA269, a rough-colony wild-type strain, and CU1060, a spontaneous smooth-colony laboratory variant, and G. adiacens were the next in coaggregation efficiency. These dual species combinations also were able to grow as biofilms. While both G. elegans and G. adiacens coaggregated with A. actinomycetemcomitans strain SA269, but not with CU1060, they grew as biofilms with both A. actinomycetemcomitans strains.

Conclusions

G. elegans failed to form biofilm with F. nucleatum despite the strongest coaggregation with it. The ability of Granulicatella spp. to coaggregate and/or form biofilms with F. nucleatum and A. actinomycetemcomitans strains suggests that Granulicatella spp. have the potential to integrate into dental plaque biofilms.

【 授权许可】

   
2015 Karched et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150803035432698.pdf 1401KB PDF download
Fig 4. 27KB Image download
Fig. 3. 125KB Image download
Fig. 2. 84KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig 4.

【 参考文献 】
  • [1]Frenkel A, Hirsch W. Spontaneous development of L forms of streptococci requiring secretions of other bacteria or sulphydryl compounds for normal growth. Nature. 1961; 191:728-30.
  • [2]Kawamura Y, Hou XG, Sultana F, Liu S, Yamamoto H, Ezaki T. Transfer of Streptococcus adjacens and Streptococcus defectivus to Abiotrophia gen. nov. as Abiotrophia adiacens comb. nov. and Abiotrophia defectiva comb. nov., respectively. Int J Syst Bacteriol. 1995; 45(4):798-803.
  • [3]Collins MD, Lawson PA. The genus Abiotrophia (Kawamura et al.) is not monophyletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb. nov., Granulicatella elegans comb. nov. and Granulicatella balaenopterae comb. nov. Int J Syst Evol Microbiol. 2000; 50 Pt 1:365-9.
  • [4]Mikkelsen L, Theilade E, Poulsen K. Abiotrophia species in early dental plaque. Oral Microbiol Immunol. 2000; 15(4):263-8.
  • [5]Sato S, Kanamoto T, Inoue M. Abiotrophia elegans strains comprise 8% of the nutritionally variant streptococci isolated from the human mouth. J Clin Microbiol. 1999; 37(8):2553-6.
  • [6]Belstrom D, Fiehn NE, Nielsen CH, Kirkby N, Twetman S, Klepac-Ceraj V et al.. Differences in bacterial saliva profile between periodontitis patients and a control cohort. J Clin Periodontol. 2014; 41(2):104-12.
  • [7]Kanasi E, Dewhirst FE, Chalmers NI, Kent R, Moore A, Hughes CV et al.. Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 2010; 44(5):485-97.
  • [8]Hsiao WW, Li KL, Liu Z, Jones C, Fraser-Liggett CM, Fouad AF. Microbial transformation from normal oral microbiota to acute endodontic infections. BMC Genomics. 2012; 13:345. BioMed Central Full Text
  • [9]Siqueira JF, Rocas IN. Catonella morbi and Granulicatella adiacens: new species in endodontic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006; 102(2):259-64.
  • [10]Dunne WM. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002; 15(2):155-66.
  • [11]Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010; 8(7):471-80.
  • [12]Foster JS, Kolenbrander PE. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol. 2004; 70(7):4340-8.
  • [13]Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 2003; 11(2):94-100.
  • [14]Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe. 2009; 5(6):580-92.
  • [15]Kolenbrander PE, Palmer RJ, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000. 2006; 42:47-79.
  • [16]Daep CA, Lamont RJ, Demuth DR. Interaction of Porphyromonas gingivalis with oral streptococci requires a motif that resembles the eukaryotic nuclear receptor box protein-protein interaction domain. Infect Immun. 2008; 76(7):3273-80.
  • [17]Kolenbrander PE, Andersen RN. Inhibition of coaggregation between Fusobacterium nucleatum and Porphyromonas (Bacteroides) gingivalis by lactose and related sugars. Infect Immun. 1989; 57(10):3204-9.
  • [18]Lancy P, Dirienzo JM, Appelbaum B, Rosan B, Holt SC. Corncob formation between Fusobacterium nucleatum and Streptococcus sanguis. Infect Immun. 1983; 40(1):303-9.
  • [19]Murakami Y, Nagata H, Amano A, Takagaki M, Shizukuishi S, Tsunemitsu A et al.. Inhibitory effects of human salivary histatins and lysozyme on coaggregation between Porphyromonas gingivalis and Streptococcus mitis. Infect Immun. 1991; 59(9):3284-6.
  • [20]Nagata H, Amano A, Ojima M, Tanaka M, Kataoka K, Shizukuishi S. Effect of binding of fibrinogen to each bacterium on coaggregation between Porphyromonas gingivalis and Streptococcus oralis. Oral Microbiol Immunol. 1994; 9(6):359-63.
  • [21]Li J, Ellen RP. Relative adherence of Bacteroides species and strains to Actinomyces viscosus on saliva-coated hydroxyapatite. J Dent Res. 1989; 68(9):1308-12.
  • [22]Sato T, Nakazawa F. Coaggregation between Prevotella oris and Porphyromonas gingivalis. J Microbiol Immunol Infect. 2014; 47(3):182-6.
  • [23]Shimotahira N, Oogai Y, Kawada-Matsuo M, Yamada S, Fukutsuji K, Nagano K et al.. The surface layer of Tannerella forsythia contributes to serum resistance and oral bacterial coaggregation. Infect Immun. 2013; 81(4):1198-206.
  • [24]Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol. 2008; 190(10):3646-57.
  • [25]Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol. 2008; 66(3):637-44.
  • [26]He X, Hu W, Kaplan CW, Guo L, Shi W, Lux R. Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. Microb Ecol. 2012; 63(3):532-42.
  • [27]Meuric V, Martin B, Guyodo H, Rouillon A, Tamanai-Shacoori Z, Barloy-Hubler F et al.. Treponema denticola improves adhesive capacities of Porphyromonas gingivalis. Mol Oral Microbiol. 2013; 28(1):40-53.
  • [28]Ramsey MM, Whiteley M. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc Natl Acad Sci U S A. 2009; 106(5):1578-83.
  • [29]Das M, Badley AD, Cockerill FR, Steckelberg JM, Wilson WR. Infective endocarditis caused by HACEK microorganisms. Annu Rev Med. 1997; 48:25-33.
  • [30]Christensen JJ, Facklam RR. Granulicatella and Abiotrophia species from human clinical specimens. J Clin Microbiol. 2001; 39(10):3520-3.
  • [31]Paul-Satyaseela M, Karched M, Bian Z, Ihalin R, Boren T, Arnqvist A et al.. Immunoproteomics of Actinobacillus actinomycetemcomitans outer-membrane proteins reveal a highly immunoreactive peptidoglycan-associated lipoprotein. J Med Microbiol. 2006; 55(Pt 7):931-42.
  • [32]Karched M, Paul-Satyaseela M, Asikainen S. A simple viability-maintaining method produces homogenic cell suspensions of autoaggregating wild-type Actinobacillus actinomycetemcomitans. J Microbiol Methods. 2007; 68(1):46-51.
  • [33]Fine DH, Furgang D, Schreiner HC, Goncharoff P, Charlesworth J, Ghazwan G et al.. Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology. 1999; 145(Pt 6):1335-47.
  • [34]Hoffman H. Gaseous requirements for the cultivation of fusobacteria. J Bacteriol. 1951; 61(2):241-2.
  • [35]Karched M, Bhardwaj RG, Inbamani A, Asikainen SE: Quantitation of biofilm and planktonic life forms of coexisting periodontal species. Anaerobe 2015, In press.
  • [36]Rupani D, Izano EA, Schreiner HC, Fine DH, Kaplan JB. Aggregatibacter actinomycetemcomitans serotype f O-polysaccharide mediates coaggregation with Fusobacterium nucleatum. Oral Microbiol Immunol. 2008; 23(2):127-30.
  • [37]Nagaoka S, Hojo K, Murata S, Mori T, Ohshima T, Maeda N. Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays. FEMS Microbiol Lett. 2008; 281(2):183-9.
  • [38]Oscarsson J, Karched M, Thay B, Chen C, Asikainen S. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol. 2008; 8:206. BioMed Central Full Text
  • [39]Merritt J, Niu G, Okinaga T, Qi F. Autoaggregation response of Fusobacterium nucleatum. Appl Environ Microbiol. 2009; 75(24):7725-33.
  • [40]Sharma A, Inagaki S, Sigurdson W, Kuramitsu HK. Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol Immunol. 2005; 20(1):39-42.
  • [41]Bradshaw DJ, Marsh PD, Watson GK, Allison C. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun. 1998; 66(10):4729-32.
  • [42]Okuda T, Kokubu E, Kawana T, Saito A, Okuda K, Ishihara K. Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species. Anaerobe. 2012; 18(1):110-6.
  • [43]Periasamy S, Kolenbrander PE. Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva. Infect Immun. 2009; 77(9):3542-51.
  • [44]Kinder SA, Holt SC. Localization of the Fusobacterium nucleatum T18 adhesin activity mediating coaggregation with Porphyromonas gingivalis T22. J Bacteriol. 1993; 175(3):840-50.
  • [45]Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun. 1989; 57(10):3194-203.
  • [46]Bachrach G, Ianculovici C, Naor R, Weiss EI. Fluorescence based measurements of Fusobacterium nucleatum coaggregation and of fusobacterial attachment to mammalian cells. FEMS Microbiol Lett. 2005; 248(2):235-40.
  • [47]Bouvet A, Grimont F, Grimont PAD. Streptococcus defectivus sp. nov. and Streptococcus adjacens Human Clinical Specimens sp. nov. Nutritionally Variant Streptococci. Int J Syst Bacteriol. 1989; 39:290-4.
  • [48]Roggenkamp A, Abele-Horn M, Trebesius KH, Tretter U, Autenrieth IB, Heesemann J. Abiotrophia elegans sp. nov., a possible pathogen in patients with culture-negative endocarditis. J Clin Microbiol. 1998; 36(1):100-4.
  • [49]Suzuki N, Nakano Y, Kiyoura Y. Characterizing the specific coaggregation between Actinobacillus actinomycetemcomitans serotype c strains and Porphyromonas gingivalis ATCC 33277. Oral Microbiol Immunol. 2006; 21(6):385-91.
  • [50]Khemaleelakul S, Baumgartner JC, Pruksakom S. Autoaggregation and coaggregation of bacteria associated with acute endodontic infections. J Endod. 2006; 32(4):312-8.
  • [51]Shen S, Samaranayake LP, Yip HK. Coaggregation profiles of the microflora from root surface caries lesions. Arch Oral Biol. 2005; 50(1):23-32.
  • [52]Inouye T, Ohta H, Kokeguchi S, Fukui K, Kato K. Colonial variation and fimbriation of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett. 1990; 57(1-2):13-7.
  • [53]Kachlany SC, Planet PJ, Bhattacharjee MK, Kollia E, DeSalle R, Fine DH et al.. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol. 2000; 182(21):6169-76.
  • [54]Nagayama M, Sato M, Yamaguchi R, Tokuda C, Takeuchi H. Evaluation of co-aggregation among Streptococcus mitis, Fusobacterium nucleatum and Porphyromonas gingivalis. Lett Appl Microbiol. 2001; 33(2):122-5.
  • [55]Periasamy S, Chalmers NI, Du-Thumm L, Kolenbrander PE. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl Environ Microbiol. 2009; 75(10):3250-7.
  • [56]Lin X, Lamont RJ, Wu J, Xie H. Role of differential expression of streptococcal arginine deiminase in inhibition of fimA expression in Porphyromonas gingivalis. J Bacteriol. 2008; 190(12):4367-71.
  • [57]Bachtiar EW, Bachtiar BM, Jarosz LM, Amir LR, Sunarto H, Ganin H et al.. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Front Cell Infect Microbiol. 2014; 4:94.
  • [58]Bao K, Bostanci N, Selevsek N, Thurnheer T, Belibasakis GN. Quantitative Proteomics Reveal Distinct Protein Regulations Caused by Aggregatibacter actinomycetemcomitans within Subgingival Biofilms. PLoS One. 2015; 10(3): Article ID e0119222
  • [59]Xavier KB, Bassler BL. Interference with AI-2-mediated bacterial cell-cell communication. Nature. 2005; 437(7059):750-3.
  • [60]Rosen G, Nisimov I, Helcer M, Sela MN. Actinobacillus actinomycetemcomitans serotype b lipopolysaccharide mediates coaggregation with Fusobacterium nucleatum. Infect Immun. 2003; 71(6):3652-6.
  • [61]Kuriyama T, Karasawa T, Nakagawa K, Nakamura S, Yamamoto E. Antimicrobial susceptibility of major pathogens of orofacial odontogenic infections to 11 beta-lactam antibiotics. Oral Microbiol Immunol. 2002; 17(5):285-9.
  文献评价指标  
  下载次数:33次 浏览次数:21次