期刊论文详细信息
BMC Systems Biology
Improving metabolic flux predictions using absolute gene expression data
Neil Swainston1  Pedro Mendes2  Douglas B Kell3  Catherine L Winder1  Ettore Murabito1  Warwick B Dunn1  Kieran Smallbone1  Dave Lee1 
[1] Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK;Virginia Bioinformatics Institute, Virginia Tech, Washington St. 0477, Blacksburg, Virginia, 24060, USA;School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
关键词: Exometabolomics;    RNA-Seq;    Transcriptomics;    Metabolic networks;    Metabolic flux;    Flux balance analysis;   
Others  :  1143986
DOI  :  10.1186/1752-0509-6-73
 received in 2012-01-11, accepted in 2012-06-05,  发布年份 2012
PDF
【 摘 要 】

Background

Constraint-based analysis of genome-scale metabolic models typically relies upon maximisation of a cellular objective function such as the rate or efficiency of biomass production. Whilst this assumption may be valid in the case of microorganisms growing under certain conditions, it is likely invalid in general, and especially for multicellular organisms, where cellular objectives differ greatly both between and within cell types. Moreover, for the purposes of biotechnological applications, it is normally the flux to a specific metabolite or product that is of interest rather than the rate of production of biomass per se.

Results

An alternative objective function is presented, that is based upon maximising the correlation between experimentally measured absolute gene expression data and predicted internal reaction fluxes. Using quantitative transcriptomics data acquired from Saccharomyces cerevisiae cultures under two growth conditions, the method outperforms traditional approaches for predicting experimentally measured exometabolic flux that are reliant upon maximisation of the rate of biomass production.

Conclusion

Due to its improved prediction of experimentally measured metabolic fluxes, and of its lack of a requirement for knowledge of the biomass composition of the organism under the conditions of interest, the approach is likely to be of rather general utility. The method has been shown to predict fluxes reliably in single cellular systems. Subsequent work will investigate the method’s ability to generate condition- and tissue-specific flux predictions in multicellular organisms.

【 授权许可】

   
2012 Lee et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330055919530.pdf 331KB PDF download
Figure 1 . 23KB Image download
【 图 表 】

Figure 1 .

【 参考文献 】
  • [1]Oberhardt MA, Palsson BØ, Papin JA: Applications of genome-scale metabolic reconstructions. Mol Syst Biol 2009, 5:320.
  • [2]Orth JD, Thiele I, Palsson BØ: What is flux balance analysis? Nat Biotechnol 2010, 28:245-248.
  • [3]Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 2007, 3:119.
  • [4]Feist AM, Palsson BØ: The biomass objective function. Curr Opin Microbiol 2010, 13:344-349.
  • [5]Schuster S, Pfeiffer , Fell DA: Is maximization of molar yield in metabolic networks favoured by evolution? J Theor Biol 2008, 252:497-504.
  • [6]Pramanik J, Keasling JD: Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 1997, 56:398-421.
  • [7]Gille C, Bölling C, Hoppe A, Bulik S, Hoffmann S, Hübner K, Karlstädt A, Ganeshan R, König M, Rother K, Weidlich M, Behre J, Holzhütter HG: HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol Syst Biol 2010, 6:411.
  • [8]Westerhoff HV, Hellingwerf KJ, Van Dam K: Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. Proc Natl Acad Sci U S A 1983, 80:305-309.
  • [9]Varma A, Palsson BØ: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 1994, 60:3724-3731.
  • [10]Burgard AP, Maranas CD: Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng 2003, 82:670-677.
  • [11]Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD, Papin JA: Predicting biological system objectives de novo from internal state measurements. BMC Bioinforma 2008, 9:43. BioMed Central Full Text
  • [12]Kumar VS, Maranas CD: GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 2009, 5:e1000308.
  • [13]Kell DB, Westerhoff HV: Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiol Rev 1986, 39:305-320.
  • [14]Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E: Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008, 26:1003-1010.
  • [15]Chandrasekaran S, Price ND: Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2010, 107:17845-17850.
  • [16]Cakir T, Kirdar B, Ulgen KO: Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol Bioeng 2004, 86:251-260.
  • [17]Cakir T, Patil KR, Onsan Z, Ulgen KO, Kirdar B, Nielsen J: Integration of metabolome data with metabolic networks reveals reporter reactions. Mol Syst Biol 2006, 2:50.
  • [18]Becker SA, Palsson BO: Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 2008, 4:e1000082.
  • [19]Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP: Yeast 5 - an Expanded Reconstruction of the Saccharomyces Cerevisiae Metabolic Network. BMC Syst Biol 2012, 6:55. BioMed Central Full Text
  • [20]Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 2007, 104:1777-1782.
  • [21]Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li Y, Zeng R, Khaitovich P: Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 2009, 10:161. BioMed Central Full Text
  • [22]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
  • [23]Ning K, Fermin D, Nesvizhskii AI: Comparative Analysis of Different Label-Free Mass Spectrometry Based Protein Abundance Estimates and Their Correlation with RNA-Seq Gene Expression Data. J Proteome Res 2012, 11:2261-71.
  • [24]Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Blüthgen N, Borger S, Costenoble R, Heinemann M, Hucka M, Le Novère N, Li P, Liebermeister W, Mo ML, Oliveira AP, Petranovic D, Pettifer S, Simeonidis E, Smallbone K, Spasić I, Weichart D, Brent D, Broomhead DS, Westerhoff HV, Kırdar B, Penttilä M, Klipp E, Palsson BØ, Sauer U, Oliver SG, Mendes P, Nielsen J, Kell DB: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 2008, 26:1155-1160.
  • [25]Dobson PD, Smallbone K, Jameson D, Simeonidis E, Lanthaler K, Pir P, Lu C, Swainston N, Dunn WB, Fisher P, Hull D, Brown M, Oshota O, Stanford NJ, Kell DB, King RD, Oliver SG, Stevens RD, Mendes P: Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 2010, 4:145. BioMed Central Full Text
  • [26]Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999, 19:1720-30.
  • [27]Lee MV, Topper SE, Hubler SL, Hose J, Wenger CD, Coon JJ, Gasch AP: A dynamic model of proteome changes reveals new roles for transcript alteration in yeast. Mol Syst Biol 2011, 7:514.
  • [28]Carroll KM, Simpson DM, Eyers CE, Knight CG, Brownridge P, Dunn WB, Winder CL, Lanthaler K, Pir P, Malys N, Kell DB, Oliver SG, Gaskell SJ, Beynon RJ: Absolute quantification of the glycolytic pathway in yeast: deployment of a complete QconCAT approach. Mol Cell Proteomics 2011, 10:M111.007633.
  • [29]Aharoni A, Gaidukov L, Khersonsky O, McQ Gould S, Roodveldt C, Tawfik DS: The 'evolvability' of promiscuous protein functions. Nat Genet 2005, 37:73-76.
  • [30]Covert MW, Famili I, Palsson BØ: Identifying constraints that govern cell behavior: A key to converting conceptual to computational models in biology? Biotechnol Bioeng 2003, 84:763-772.
  • [31]Price ND, Reed JL, Palsson BØ: Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nat Rev Microbiol 2004, 2:886-897.
  • [32]Murabito E, Simeonidis E, Smallbone K, Swinton J: Capturing the essence of a metabolic network: a flux balance analysis approach. J Theor Biol 2009, 260:445-452.
  • [33]Schilling CH, Letscher D, Palsson BØ: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 2000, 203:229-248.
  • [34]Schuster S, Fell DA, Dandekar T: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotech 2000, 18:326-332.
  • [35]Kauffman KJ, Prakash P, Edwards JS: Advances in flux balance analysis. Curr Opin Biotechnol 2003, 14:491-496.
  • [36]Rochafellar RT: Convex analysis. Princeton University Press; 1970.
  • [37]Dantzig GB: Linear Programming and Extensions. Princeton University Press; 1963.
  • [38]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5:264-276.
  • [39]Lee S, Phalakornkule C, Domach MM, Grossmann IE: Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Comput Chem Eng 2000, 24:711-716.
  • [40]Smallbone K, Simeonidis E: Flux balance analysis: a geometric perspective. J Theor Biol 2009, 258:311-315.
  • [41]Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB: High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 2003, 21:692-696.
  • [42]Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG: Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 2005, 3:557-565.
  • [43]Segrè D, Vitkup D, Church GM: Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 2002, 99:15112-15117.
  • [44]Park JH, Lee SY, Kim TY, Kim HU: Application of systems biology for bioprocess development. Trends Biotechnol 2008, 26:404-412.
  • [45]Lee JW, Kim TY, Jang YS, Choi S, Lee SY: Systems metabolic engineering for chemicals and materials. Trends Biotechnol 2011, 29:370-378.
  • [46]Davey HM, Davey CL, Woodward AM, Edmonds AN, Lee AW, Kell DB: Oscillatory, stochastic and chaotic growth rate fluctuations in permittistatically-controlled yeast cultures. Biosystems 1996, 39:43-61.
  • [47]Markx GH, Davey CL, Kell DB: The permittistat: a novel type of turbidostat. J Gen Microbiol 1991, 137:735-743.
  • [48]Winder CL, Lanthaler K: The use of continuous culture in systems biology investigations. Methods Enzymol 2011, 500:261-275.
  • [49]Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, Kuhn RM, Meyer LR, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Pohl A, Malladi VS, Li CH, Learned K, Kirkup V, Hsu F, Harte RA, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, James Kent W: The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res 2012, 40:D918-23.
  • [50]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [51]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-5.
  • [52]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-8.
  • [53]Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J, SBML Forum: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19:524-531.
  • [54]Thiele I, Palsson BØ: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 2010, 5:93-121.
  • [55]Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 2011, 6:1290-307.
  文献评价指标  
  下载次数:17次 浏览次数:14次