期刊论文详细信息
BMC Genetics
Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus
Anete P Souza6  Tatiana T de Souza-Chies4  Maria I Zucchi1  Miguel Dall’Agnol5  José Francisco M Valls3  Francisco HD de Souza2  Bianca BZ Vigna2  Fernanda W Cidade7 
[1] Agência Paulista de Tecnologia dos Agronegócios/APTA, Km 30, CP 28, Pólo Regional Centro Sul, Rodovia SP127, Piracicaba, SP CEP13400-970, Brazil;Brazilian Agricultural Research Corporation (Embrapa) Southeast Livestock, CP 339, São Carlos, SP CEP 13560-970, Brazil;Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica - PqEB, CP 02372, Brasília, DF CEP 70770-917, Brasil;Department of Botany, Prédio 43433, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500 Agronomia, Porto Alegre, Rio Grande do Sul, CEP 91501-970, Brazil;Faculty of Agronomy, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712 Agronomia, Porto Alegre, Rio Grande do Sul CEP 91501-970, Brazil;Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), CP 6109 Campinas, SP, CEP 13083-875, Brazil;Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), CP 6010, Campinas, SP CEP 13083-875, Brazil
关键词: Paspalum botanical varieties;    Microsatellite markers;    Germplasm evaluation;    Genetic diversity;    Cross-species amplification;   
Others  :  1086976
DOI  :  10.1186/1471-2156-14-50
 received in 2012-10-29, accepted in 2013-05-22,  发布年份 2013
PDF
【 摘 要 】

Background

Paspalum (Poaceae) is an important genus of the tribe Paniceae, which includes several species of economic importance for foraging, turf and ornamental purposes, and has a complex taxonomical classification. Because of the widespread interest in several species of this genus, many accessions have been conserved in germplasm banks and distributed throughout various countries around the world, mainly for the purposes of cultivar development and cytogenetic studies. Correct identification of germplasms and quantification of their variability are necessary for the proper development of conservation and breeding programs. Evaluation of microsatellite markers in different species of Paspalum conserved in a germplasm bank allowed assessment of the genetic differences among them and assisted in their proper botanical classification.

Results

Seventeen new polymorphic microsatellites were developed for Paspalum atratum Swallen and Paspalum notatum Flüggé, twelve of which were transferred to 35 Paspalum species and used to evaluate their variability. Variable degrees of polymorphism were observed within the species. Based on distance-based methods and a Bayesian clustering approach, the accessions were divided into three main species groups, two of which corresponded to the previously described Plicatula and Notata Paspalum groups. In more accurate analyses of P. notatum accessions, the genetic variation that was evaluated used thirty simple sequence repeat (SSR) loci and revealed seven distinct genetic groups and a correspondence of these groups to the three botanical varieties of the species (P. notatum var. notatum, P. notatum var. saurae and P. notatum var. latiflorum).

Conclusions

The molecular genetic approach employed in this study was able to distinguish many of the different taxa examined, except for species that belong to the Plicatula group, which has historically been recognized as a highly complex group. Our molecular genetic approach represents a valuable tool for species identification in the initial assessment of germplasm as well as for characterization, conservation and successful species hybridization.

【 授权许可】

   
2013 Cidade et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116021335301.pdf 2809KB PDF download
Figure 7. 67KB Image download
Figure 6. 80KB Image download
Figure 5. 56KB Image download
Fig. 3. 39KB Image download
Figure 3. 38KB Image download
Figure 2. 130KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Fig. 3.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Chase A: The North American species of Paspalum. Contributions from the United States National Herbarium 1929, 28:1-310.
  • [2]Clayton WD, Renvoize SA: Genera graminum: grasses of the world. London: Her Majesty’s Stationery Office; 1986:1-389.
  • [3]Zuloaga FO, Morrone O: Revisión de las especies de Paspalum para América del Sur Austral (Argentina, Bolivia, sur del Brasil, Chile, Paraguay y Uruguay). Monogr Syst Bot Mo Bot Gard 2005, 102:1-297.
  • [4]Judziewicz EJ: Family 187. Poaceae (Gramineae). In Flora of the Guianas, 8. Edited by RA A, Görts-van R. Königstein: Koltz Scientific Books; 1990:1-727. [Series A: Phanerogams]
  • [5]Rua GH: Estudos filogenéticos em Paniceae: os casos de Paspalum e Digitaria. In Anais do 57o Congresso Nacional de Botânica Os Avanços da Botânica no início do século XXI morfologia fisiologia taxonomia ecologia e genética. Edited by Mariath JEA, Santos Porto Alegre RP. Brasi: Sociedade Botânica do; 2006:170-173.
  • [6]Valls JFM: Recursos genéticos de espécies de Paspalum no Brasil. In Encontro Internacional sobre melhoramento genético de Paspalum. Brasil: Nova Odessa; 1987:3-13.
  • [7]Barreto IL: O gênero Paspalum (Gramineae) no Rio Grande do Sul. PhD thesis. Rio Grande do Su: Universidade Federal; 1974.
  • [8]Canto-Dorow TS: Revisão taxonômica das espécies de Paspalum grupo Notata (Poaceae-Paniceae) do Rio Grande do Sul, Brasil. Iheringia 1996, 47:3-44.
  • [9]Morrone O, Carbonó E: Revision del grupo Racemosa del genero Paspalum (Poaceae: Panicoideae: Paniceae). Ann Mo Bot Gard 1995, 82:82-116.
  • [10]Morrone O, Vega A, Zuloaga FO: Revisión de las especies del género Paspalum (Poaceae: Panicoideae: Paniceae), grupo Dissecta (s. str.). Candollea 1996, 51:103-138.
  • [11]Morrone O, Denham SS, Aliscioni SS, Zuloaga FO: Revisión de las especies de Paspalum (Panicoideae: Paniceae), subgénero Anachyris. Candollea 2000, 55:105-135.
  • [12]Oliveira RC, Valls JFM: Taxonomia de Paspalum L., grupo Linearia (Gramineae-Paniceae) do Brasil. Rev Bras Bot 2002, 25:371-389.
  • [13]Denham SS, Zuloaga FO, Morrone O: Systematic revision and phylogeny of Paspalum subgenus Ceresia (Poaceae: Panicoideae: Paniceae). Ann Mo Bot Gard 2002, 89:337-399.
  • [14]Denham SS: Revisión sistemática del subgénero Harpostachys de Paspalum (Poaceae: Panicoideae: Paniceae). Ann Mo Bot Gard 2005, 92:463-532.
  • [15]Rua GH, Aliscioni SS: A morphology-based cladistic analysis of Paspalum sect. Pectinata (Poaceae). Syst Bot 2002, 27:489-501.
  • [16]Zuloaga FO, Pensiero J, Morrone O: Systematics of Paspalum group Notata (Poaceae- panicoideae- Paniaceae). Syst Bot Monogr 2004, 71:1-75.
  • [17]Burson BL, Bennett HW: Chromosome numbers, microsporogenesis, and mode of reproduction of seven Paspalum species. Crop Sci 1971, 11:292-294.
  • [18]Evers GW, Burson BL: Dallisgrass and other Paspalum species. In Warm-Season (C 4) Grasses, Agronomy Monographs 45 Edited by Moser L, Burson BL, Sollenberger LE M. 2004, 681-713. ASA, CSSA, and SSSA
  • [19]Gates RN, Quarín CL, Gates RN, Quarín CL, Pedreira CGS: Bahiagrass. In Warm-Season (C 4) Grasses, Agronomy Monographs 45 Edited by Moser L, Burson BL, Sollenberger LE M. 2004, 651-680. ASA, CSSA, and SSSA
  • [20]De Wet JMJ, Prasada Rao KE, Mengesha MH, Brink DE: Diversity in Kodo Millet. Paspalum scrobiculatum. Economic Botany 1983, 37:159-163.
  • [21]Duncan RR, Carrow RN: Seashore Paspalum: the environmental turfgrass. Hoboken, NJ: J. Wiley & Sons; 2000:281.
  • [22]Oliveira RC: O gênero Paspalum L., grupo Plicatula (Poaceae: Paniceae), no Brasil. PhD thesis. Universidade Estadual de Campinas; 2004.
  • [23]Pagliarini MS, Carraro LR, Freitas PM, Adamowski EV, Batista LAR, Valls JFM: Cytogenetic characterization of Brazilian Paspalum accessions. Hereditas 2001, 135:27-34.
  • [24]Quarín CL: The nature of apomixis and its origin in Panicoid grasses. Apomixis Newsl 1992, 5:8-15.
  • [25]Burton GW: A cytological study of some species in the genus Paspalum. J Agric Res 1940, 60:193-197.
  • [26]Norrmann GA, Quarín CL, Burson BL: Cytogenetics and reproductive behavior of different chromosome races in six Paspalum species. J Hered 1989, 80:24-28.
  • [27]Honfi AI, Quarin CL, Valls JFM: Karyological studies in South American grasses. Darwiniana 1990, 30:87-94.
  • [28]Norrmann GA, Quarin CL, Killeen TJ: Chromosome numbers in Bolivian grasses (Gramineae). Ann Mo Bot Gard 1994, 81:768.
  • [29]Norrmann GA, Bovo OA, Quarín CL: Post-zygotic seed abortion in sexual diploid × apomictic tetraploid intraspecific Paspalum crosses. Aust J Bot 1994, 42:449.
  • [30]Quarín CL, Pozzobon MT, Valls JFM: Cytology and reproductive behavior of diploid, tetraploid and hexaploid germplasm accessions of a wild forage grass: Paspalum compressifolium. Euphytica 1996, 90:345-349.
  • [31]Pozzobon MT, Valls JFM: Chromosome number in Brazilian germplasm accessions of Paspalum hydrophilum, P. modestum and P. palustre (Gramineae; Paniceae). Genet Mol Biol 2003, 26:365-36.
  • [32]Pozzobon MT, Machado ACC, Vaio M, Valls JFM, Peñaloza APS, Santos S, Côrtes AL, Rua GH: Cytogenetic analyses in Paspalum L. reveal new diploid species and accessions. Cienc Rural 2008, 38:1292-1299.
  • [33]Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA: A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 2001, 13:243-249.
  • [34]Quarín CL, Norrmann GA: Interspecific hybrids between five Paspalum species. Bot Gaz 1990, 151:366-369.
  • [35]Vaio M, Speranza P, Valls JFM, Guerra M, Mazzella C: Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Ann Bot 2005, 96:191-200.
  • [36]Parodi LR: Gramíneas Argentinas nuevas o críticas. I. La variacíon en Paspalum notatum Flügge. Rev Argent Agronomía 1948, 15:53-57.
  • [37]Canto-Dorow TS: Revisão taxonômica das espécies sul-riograndenses de Paspalum L. (grupo Notata) Poaceae - Paniceae, com ênfase na análise da variação intra-específica de Paspalum notatum Flügge. Universidade Federal do Rio Grande do Sul: Msc dissertation; 1993.
  • [38]Burton GW: Bahiagrass types. J Am Soc Agron 1946, 38:273-281.
  • [39]Burton GW: The method of reproduction in common bahiagrass. Paspalum notatum. J Am Soc Agron 1948, 40:443-452.
  • [40]Forbes I, Burton GW: Cytology of diploids, natural and induced tetraploids and intraspecies hybrids of bahiagrass, Paspalum notatum Fluegge. Crop Sci 1961, 1:402-406.
  • [41]Döll JC: Gramineae II. In Flora brasiliensis. Edited by Martius CFP, Eichler AW, Monachii F. Fleischer; 1877:276-296.
  • [42]Rosengurtt B, Arrelliga BR, Izaguirre P: Gramíneas uruguayas. Universidad de la República: Montevideo; 1970.
  • [43]Lombardo A: Flora montevidensis. Montivideo: Intendencia Municipal de Montevideo; 1984.
  • [44]Daurelio LD, Espinoza F, Quarin CL, Pessino SC: Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 2004, 244:189-199.
  • [45]Espinoza F, Daurelio LD, Pessino SC, Valle EM, Quarin CL: Genetic characterization of Paspalum notatum accessions by AFLP markers. Plant Syst Evol 2006, 258:147-159.
  • [46]Speranza PR: Evolutionary patterns in the Dilatata group (Paspalum, Poaceae). Plant Syst Evol 2009, 282:43-56.
  • [47]Jungmann L, Vigna BBZ, Boldrini KR, Sousa ACB, Do Valle CB, Resende RMS, Pagliarini MS, Zucchi MI, DeSouza AP: Genetic diversity and population structure analysis of the tropical pasture grass Brachiaria humidicola based on microsatellites, cytogenetics, morphological traits, and geographical origin. Genome 2010, 53:698-709.
  • [48]Oliveira RP, Borba EL, Longhi-Wagner HM, Pereira ACS, Lambert SM: Genetic and morphological variability in the Raddia brasiliensis complex (Poaceae: Bambusoideae). Plant Syst Evol 2008, 274:25-35.
  • [49]Cidade FW, Dall’Agnol M, Bered F, Souza-Chies TT: Genetic diversity of the complex Paspalum notatum Flügge (Paniceae: Panicoideae). Genet Resour Crop Evol 2008, 55:235-246.
  • [50]Pazos-Navarro M, Dabauza M, Correal E, Hanson K, Teakle N, Real D, Nelson MN: Next generation DNA sequencing technology delivers valuable genetic markers for the genomic orphan legume species Bituminaria bituminosa. BMC Genet 2011, 12:104.
  • [51]Santos-Garcia MO, Karia CT, Resende RMS, Chiari L, Vieira MLC, Zucchi MI, Souza AP: Identification of Stylosanthes guianensis varieties using molecular genetic analysis. AoB PLANTS 2012, pls001.
  • [52]Esselman EJ, Jianqiang L, Crawford DJ, Windus JL, Wolfe AD: Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers. Mol Ecol 1999, 8:443-451.
  • [53]Assefa K, Merker A, Tefera H: Inter simple sequence repeat (ISSR) analysis of genetic diversity in tef [Eragrostis tef(Zucc.) Trotter]. Hereditas 2003, 139:174-83.
  • [54]Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrão EA, Duarte CM: Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. J Hered 2005, 96:434-40.
  • [55]Morgante M, Olivieri AM: PCR-amplified microsatellites as markers in plant genetics. Plant J 1993, 3:175-82.
  • [56]Liu Z, Jarret R, Kresovich S, Duncan RR: Characterization and analysis of simple sequence repeat (SSR) loci in seashore paspalum (Paspalum vaginatum Swartz). Theor Appl Genet 1995, 91(1):47-52.
  • [57]Speranza P, Malosetti M: Nuclear and cytoplasmic microsatellite markers for the species of the Dilatata group of Paspalum (Poaceae). Plant Genet Resour 2007, 5:14-26.
  • [58]Cidade FW, Souza-Chies TT, Batista LAR, Dall’agnol M, Zucchi MI, Jungmann L, Souza AP: Isolation and characterization of microsatellite loci in Paspalum notatum Flüggé (Poaceae). Conserv Genet 2009, 10:1977-1980.
  • [59]Cidade FW, Souza-Chies TT, Souza FHD, Batista LAR, Dall’Agnol M, Valls JFM, Zucchi MI, Souza AP: Microsatellite loci for Paspalum atratum (Poaceae) and cross-amplification in other species. Am J Bot 2010, 97:e107-e110.
  • [60]Byrne M, Marquez-Garcia MI, Uren T, Smith DS, Moran GF: Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 1996, 44:331-341.
  • [61]Steinkellner H, Lexer C, Turetschek E, Glossl J: Conservation of (GA)n microsatellite loci between Quercus species. Mol Ecol 1997, 6:1189-1194.
  • [62]Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A: Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 1998, 15:1275-87.
  • [63]Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, Bonierbale MW, Iglesias C, Tohme J: Cross-species amplification of cassava (Manihot esculenta)(Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am J Bot 2000, 87:1647-1655.
  • [64]Dirlewanger E, Cosson P, Tavaud M, Aranzana J, Poizat C, Zanetto A, Arús P, Laigret F: Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 2002, 105:127-138.
  • [65]Hempel K, Peakall R: Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of inbreeding wild relatives. Genome 2003, 46:382-93.
  • [66]González-Martínez SC, Robledo-Arnuncio JJ, Collada C, Díaz A, Williams CG, Alía R, Cervera MT: Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor Appl Genet 2004, 109:103-11.
  • [67]Poncet V, Hamon P, Minier J, Carasco C, Hamon S, Noirot M: SSR cross-amplification and variation within coffee trees (Coffea spp.). Genome 2004, 47:1071-81.
  • [68]Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987, 19:11-15.
  • [69]Billotte N, Lagoda PJL, Risterucci AM, Baurens FC: Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 1999, 54:277-288.
  • [70]Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS: “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 1991, 19(14):4008.
  • [71]Wu KS, Tanksley SD: Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 1993, 241–241:225-235.
  • [72]Cordeiro GM, Pan Y, Henry RJ: Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci 2003, 165:181-189.
  • [73]Dice LR: Measures of the amount of ecologic association between species. Ecology 1945, 26:297-302.
  • [74]Jaccard P: Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 1908, 44:223-270.
  • [75]Rohlf FJ: NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. New York: Exeter Software; 2000.
  • [76]Sneath PHA, Sokal RR: Numerical taxonomy. In The principles and practice of numerical classification. San Francisco: Freeman; 1973:573.
  • [77]Mantel N: The detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27:209-220.
  • [78]Perrier X, Jacquemoud-Collet JP: DARwin software. Computer program and documentation distributed by the author 2006. http://darwin.cirad.fr/darwin/Home.php webcite
  • [79]Rambaut A: FigTree. 2009. ver. 1.3.1
  • [80]Coelho ASG: BOOD-Avaliação de dendrogramas baseados em estimativas de distâncias/similaridades genéticas através do procedimento de bootstrap, Versão 3.0. UFG: Laboratório Genética Vegetal, DBG/ICB; 2001.
  • [81]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-59.
  • [82]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003, 164:1567-87.
  • [83]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 2007, 7:574-578.
  • [84]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-20.
  • [85]Earl DA, VonHoldt BM: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2011. online first
  • [86]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinformatics 2005, 1:47-50.
  • [87]Cidade FW: Análise da variabilidade genética de Paspalum notatum Flügge (Poaceae, Panicoideae) com o uso de marcadores moleculares, morfológicos e citometria de fluxo. Universidade Federal do Rio Grande do Sul: Msc dissertation; 1974.
  • [88]Cruz CD: Programa Genes - versão Windows: aplicativo computacional em genética e estatística. [http://www.ufv.br/dbg/genes/genes.htm webcite]
  • [89]STATISTICA software, version 7.0. [http://www.statsoft.com/support/download webcite]
  • [90]Ersts PJ: Geographic Distance Matrix Generator, version 1.2.3. [http://biodiversityinformatics.amnh.org/open_source/gdmg webcite]
  • [91]Hijmans R, Guarino L: Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 2001, 127:15-19.
  • [92]Huang Q, Börner A, Röder S, Ganal W: Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 2002, 105:699-707.
  • [93]Nei M: Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 1973, 70:3321-3.
  • [94]Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S: Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 2000, 43:512-20.
  • [95]Primmer CR, Møller AP, Ellegren H: A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 1996, 5:365-378.
  • [96]Park YJ, Lee JK, Kim NS: Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 2009, 14:4546-69.
  • [97]Sousa SN, Finkeldey R, Gailing O: Experimental verification of microsatellite null alleles in Norway Spruce (Picea abies [L.] Karst.): implications for population genetic studies. Plant Mol Biol 2005, 23:113-119.
  • [98]Pemberton JM, Slate J, Bancroft DR, Barrett JA: Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 1995, 4:249-252.
  • [99]Rua GH, Speranza PR, Vaio M, Arakaki M: A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. Plant Syst Evol 2010, 288:227-243.
  • [100]Souza-Chies TT, Essi L, Rua GH, Valls JFM, Miz RB: A preliminary approach to the phylogeny of the genus Paspalum (Poaceae). Genetica 2006, 126:15-32.
  • [101]Essi L, Souza-Chies TT: Phylogeny of Linearia and Notata groups of Paspalum L. (Poaceae, Panicoideae, Paniceae) and related species. Genet Resour Crop Evol 2006, 54:779-791.
  • [102]Burson BL, Lee H, Bennett HW: Genome relations between tetraploid Paspalum dilatatum and four diploid Paspalum species. Crop Sci 1973, 13:739-743.
  • [103]Burson BL: Genome relations between Paspalum conspersum and two diploid Paspalum species. Can J Genet Cytol 1978, 20:365-372.
  • [104]Burson BL: Phylogenetic investigations of Paspalum dilatatum and related species. In Proceedings of the 14 th International Grassland Congress. Edited by Smith JA, Hays VW B. Westview Press; 1983.
  • [105]Burson BL: Cytogenetics of Paspalum urvillei X P. intermedium and P. dilatatum X P. paniculatum hybrids. Crop Sci 1979, 19:534-538.
  • [106]Burson BL: Homology of chromosomes of the X genomes in common and Uruguayan dallisgrass, Paspalum dilatatum. Genome 1991, 34:950-953.
  • [107]Burson BL: Genome relationships between tetraploid and hexaploid biotypes of dallisgrass, Paspalum dilatatum. Bot Gaz 1991, 152a:219-223.
  • [108]Burson BL: Genome relationship and reproductive behavior of intraspecific Paspalum dilatatum hybrids: Yellow-Anthered x Uruguaiana. Int J Plant Sci 1995, 156:326-331.
  • [109]Burson BL, Bennett HW: Cytogenetics of Paspalum conspersum and its genomic relationship with yellow-anthered P. dilatatum and P. malacophyllum. Can J Genet Cytol 1976, 18:701-708.
  • [110]Burson BL, Quarín CL: Cytology of Paspalum virgatum and its relationship with P. intermedium and P. jurgensii. Can J Genet Cytol 1982, 24:219-226.
  • [111]Caponio I, Quarín CL: Intra-and interspecific hybridization between dallisgrass and vaseygrass. Crop Sci 1990, 30:362-364.
  • [112]Quarín CL, Caponio I: Cytogenetics and reproduction of Paspalum dasypleurum and its hybrids with P. urvillei and P. dilatatum ssp. flavescens. Int J Plant Sci 1995, 156:232-235.
  • [113]Giussani LM, Zuloaga FO, Quarín CL, Cota-Sánchez JH, Ubayasena K, Morrone O: Phylogenetic relationships in the genus Paspalum (Poaceae: Panicoideae: Paniceae): an assessment of the Quadrifaria and Virgata informal groups. Syst Bot 2009, 34:32-43.
  • [114]Adamowski EV, Pagliarini MS, Batista LAR: Chromosome number and microsporogenesis in Paspalum maritimum (Caespitosa group; gramineae). Braz Arch Biol Technol 2000, 43:301-305.
  • [115]Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J: Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 2003, 165:2117-28.
  • [116]Barkley NA, Roose ML, Krueger RR, Federici CT: Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 2006, 112:1519-31.
  • [117]Kwak M, Gepts P: Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 2009, 118:979-92.
  • [118]Carino DA, Daehler CC: Genetic variation in an apomictic grass, Heteropogon contortus, in the Hawaiian Islands. Mol Ecol 1999, 8:2127-2132.
  • [119]Burton GW: A search for the origin of Pensacola Bahia grass. Econ Bot 1967, 21:379-382.
  • [120]Poulin J, Weller SG, Sakai AK: Genetic diversity does not affect the invasiveness of fountain grass (Pennisetum setaceum) in Arizona, California and Hawaii. Divers Distrib 2005, 11:241-247.
  • [121]Kellogg EA: Variation and species limits in agamospermous grasses. Syst Bot 1990, 15:112-123.
  • [122]Pagliarini MS, Takayama SY, Freitas PM, Carraro LR, Adamowski EV, Silva N, Batista LAR: Failure of cytokinesis and 2n gamete formation in Brazilian accessions of Paspalum. Euphytica 1999, 108:129-135.
  • [123]Adamowski EV, Pagliarini MS, Bonato ABM, Batista LAR, Valls JFM: Chromosome numbers and meiotic behavior of some Paspalum accessions. Genet Mol Biol 2005, 28:773-780.
  • [124]Takayama SY, Freitas PM, Pagliarini MS, Batista LAR: Chromosome number in germplasm accessions of Paspalum (Plicatula group) from different regions in Brazil. Euphytica 1998, 99:89-94.
  • [125]Pozzobon MT, Valls JFM: Cytogeography and variation of stomatal size of Paspalum glaucescens (Gramineae; Paniceae) in Southern Brazil. Euphytica 2000, 116:251-256.
  • [126]Dahmer N, Schifino-Wittmann MT, Dall’Agnol M, Castro B: Cytogenetic data for Paspalum notatum Flüggé accessions. Sci Agric 2008, 65:381-388.
  • [127]Moraes-Fernandes MIB, Barreto IL, Salzano FM, Sacchet AMOF: Cytological and evolutionary relationships in Brazilian forms of Paspalum (Gramineae). Caryologia 1974, 27(4):455-464.
  • [128]Quarín CL: Híbridos interespecíficos de Paspalum notatum x P. modestum. Bonplandia 1983, V:235-242.
  • [129]Quarín CL: Recuentos cromosómicos en gramíneas de Argentina Subtropical. Hickenia 1977, 1:73-78.
  • [130]Mehra PN, Chaudhary JD: Male meiosis in some grasses of the tribe Paniceae from North Eastern India. I. Genus Paspalum. Cytologia 1981, 46:265-278.
  • [131]Soster M: Caracterização morfológica e citogenética de acessos de Paspalum coletados no sul do Brasil. Universidade Federal de Santa Catarina: PhD thesis; 2009.
  • [132]Bashaw EC, Forbes JR: chromosome numbers and microsporogenesis in Dallisgrass Paspalum dilatatum Poir1. Agron J 1958, 50:441-445.
  • [133]Bashaw EC, Hovin AW, Hold EC: Apomixis, its evolutionary significance and ulitization in plant breeding. In Proceedings of the XI International Grassland Congress. Edited by Norman MJT. Queensland, Australia: St. Lucia; 1970:245-242.
  • [134]Burson BL: Cytogenetic relationships between Paspalum jurgensii and P. intermedium, P. vaginatum, and P. setaceum var. ciliatifolium. Crop Sci 1981, 21:515-519.
  • [135]Hojsgaard D, Honfi AI, Rua G, Daviña J: Chromosome numbers and ploidy levels of Paspalum species from subtropical South America (Poaceae). Genet Resour Crop Evol 2009, 56:533-545.
  • [136]Pozzobon M: Chromosome counts in Brazilian species of Paspalum L. (Gramineae). Acta Bot Bras 2000, 14:151-162.
  • [137]Gould FW: Chromosome numbers in southwestern grasses. Am J Bot 1958, 45:757-767.
  • [138]Gould FW: Chromosome numbers of Texas grasses. Can J Bot 1968, 46:1315-1325.
  • [139]Hojsgaard D, Schegg E, Valls JFM, Martínez E, Quarín CL: Sexuality, apomixis, ploidy levels, and genomic relationships among four Paspalum species of the subgenus Anachyris (Poaceae). Flora 2008, 203:535-547.
  • [140]Burson BL, Hussey MA: Cytology of Paspalum malacophyllum and its relationship to P. juergensii and P. dilatatum. Int J Plant Sci 1998, 159:153-159.
  • [141]Quarín CL, Hanna WW: Chromosome behavior, embryo sac development, and fertility of Paspalum modestum, P. boscianum, and P. conspersum. J Hered 1980, 71:419-422.
  • [142]Quarín CL, Burson BL: Cytology of sexual and apomictic Paspalum species. Cytologia 1991, 56:223-228.
  • [143]Martínez EJ, Quarín CL: Citoembriologia y comportamiento reproductivo de un citotipo diploide de Paspalum hydrophilum y sus hibridos con P. palustre (Poaceae, Paniceae). Darwiniana 1999, 37:223-228.
  • [144]Burson BL, Bennett HW: Meiotic and reproductive behavior of some introduced Paspalum species. J Miss Acad Sci 1971, 17:5-8.
  • [145]Pozzobon MT, Valls JFM: Caracterização citogenética em acessos de germoplasma de espécies brasileiras de Paspalum (Gramineae). In Encontro Internacional sobre melhoramento genético de Paspalum. Nova Odessa; 1987:73-78.
  • [146]Burton GW: The method of reproduction in common Bahia grass, Paspalum notatum. Journal of the American Society of Agronomy 1948, 40:443-452.
  • [147]Burson BL: Genome relations among four diploid Paspalum species. Bot Gaz 1981, 142:592-596.
  • [148]Burton GW: Breeding Pensacola bahiagrass, Paspalum notatum: I. Method of reproduction. Agron J 1955, 47:311-314.
  • [149]Quarín CL, Burson BL: Cytogenetic relations among Paspalum notatum var. saurae, P. pumilum, P. indecorum, and P. vaginatum. Bot Gaz 1983, 144:433-438.
  • [150]Quarín CL, Hanna WW, Fernández A: Genetic studies in diploid and tetraploid Paspalum species. J Hered 1982, 72:254-256.
  • [151]Quarín CL, Burson BL, Burton GW: Cytology of intra- and interspecific hybrids between two cytotypes of Paspalum notatum and P. cromyorrhizon. Bot Gaz 1984, 145:420-426.
  • [152]Quarin CL, Norrmann GA: Cytology and reproductive behavior of Paspalum equitans, P. ionanthum, and their hybrids with diploid and tetraploid cytotypes of P. cromyorrhizon. Bot Gaz 1987, 148:386-391.
  • [153]Burson BL, Bennett HW: Cytology and reproduction of three Paspalum species. J Hered 1970, 61:129-132.
  • [154]Sede S, Escobar A, Morrone O, Zuloaga FO: Chromosome studies in American Paniceae (Poaceae, Panicoideae) 1. Ann Mo Bot Gard 2010, 97:128-138.
  • [155]Quarín CL, Valls JFM, Urbani MH: Cytological and reproductive behaviour of Paspalum atratum, a promising forage grass for the tropics. Trop Grassl 1997, 31:114-116.
  • [156]Rodrigues LG, Santos S, Oliveira RC, Peñaloza APS: Contagens cromossômicas em espécies brasileiras de Paspalum (Gramineae). In Anais do III Simpósio de Recursos Genéticos para a América Latina e Caribe. Londrina; 2001:395-397.
  • [157]Burton GW: A cytological study of some species in the tribe Paniceae. Am J Bot 1942, 29:355-360.
  文献评价指标  
  下载次数:14次 浏览次数:2次