期刊论文详细信息
BMC Genomics
An overlapping set of genes is regulated by both NFIB and the glucocorticoid receptor during lung maturation
Timothy L Bailey1  Richard M Gronostajski2  Yu-Chih Hsu2  Mathieu Lajoie1 
[1] Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia 4072, Australia;Department of Biochemistry and Developmental Genomics Group, University at Buffalo, 701 Ellicott St., 14203 Buffalo, USA
关键词: Transcription factor;    Motif analysis;    Expression analysis;    ChIP-seq analysis;    Regulation of transcription;    Nfib;    Glucocorticoid receptor;    Nr3c1;    Lung development;   
Others  :  1217644
DOI  :  10.1186/1471-2164-15-231
 received in 2013-12-02, accepted in 2014-03-11,  发布年份 2014
PDF
【 摘 要 】

Background

Lung maturation is a late fetal developmental event in both mice and humans. Because of this, lung immaturity is a serious problem in premature infants. Disruption of genes for either the glucocorticoid receptor (Nr3c1) or the NFIB transcription factors results in perinatal lethality due to lung immaturity. In both knockouts, the phenotype includes excess cell proliferation, failure of saccularization and reduced expression of markers of epithelial differentiation. This similarity suggests that the two genes may co-regulate a specific set of genes essential for lung maturation.

Results

We analyzed the roles of these two transcription factors in regulating transcription using ChIP-seq data for NFIB, and RNA expression data and motif analysis for both. Our new ChIP-seq data for NFIB in lung at E16.5 shows that NFIB binds to a NFI motif. This motif is over-represented in the promoters of genes that are under-expressed in Nfib-KO mice at E18.5, suggesting an activator role for NFIB. Using available microarray data from Nr3c1-KO mice, we further identified 52 genes that are under-expressed in both Nfib and Nr3c1 knockouts, an overlap which is 13.1 times larger than what would be expected by chance. Finally, we looked for enrichment of 738 recently published transcription factor motifs in the promoters of these putative target genes and found that the NFIB and glucocorticoid receptor motifs were among the most enriched, suggesting that a subset of these genes may be directly activated by Nfib and Nr3c1.

Conclusions

Our data provide the first evidence for Nfib and Nr3c1 co-regulating genes related to lung maturation. They also establish that the in vivo DNA-binding specificity of NFIB is the same as previously seen in vitro, and highly similar to that of the other NFI-family members NFIA, NFIC and NFIX.

【 授权许可】

   
2014 Lajoie et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707171910815.pdf 1314KB PDF download
Figure 8. 49KB Image download
Figure 7. 58KB Image download
Figure 6. 48KB Image download
Figure 5. 57KB Image download
Figure 4. 62KB Image download
Figure 3. 56KB Image download
Figure 2. 94KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Maeda Y, Davé V, Whitsett JA: Transcriptional control of lung morphogenesis. Physiol Rev 2007, 87(1):219-244.
  • [2]Morrisey EE, Hogan BL: Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010, 18(1):8-23.
  • [3]Popova AP: Mechanisms of bronchopulmonary dysplasia. J Cell Commun Signal 2013, 7(2):119.
  • [4]Roos AB, Berg T, Nord M: A relationship between epithelial maturation, bronchopulmonary dysplasia, and chronic obstructive pulmonary disease. Pulm Med 2012, 1(2):119.
  • [5]Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, Litwack ED, Richards LJ, Gronostajski RM: The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 2005, 25(2):685-698.
  • [6]Hsu Y-C, Osinski J, Campbell CE, Litwack ED, Wang D, Liu S, Bachurski CJ, Gronostajski RM: Mesenchymal nuclear factor IB regulates cell proliferation and epithelial differentiation during lung maturation. Dev Biol 2011, 354(2):242-252.
  • [7]Shannon JM, Hyatt BA: Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 2004, 66:625-645.
  • [8]Seckl JR: Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 2004, 151 Suppl 3:49-62.
  • [9]Banks BA, Cnaan A, Morgan MA, Parer JT, Merrill JD, Ballard PL, Ballard RA: Multiple courses of antenatal corticosteroids and outcome of premature neonates. Am J Obstet Gynecol 1999, 181(3):709-717.
  • [10]Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schütz G: Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 1995, 9(13):1608-1621.
  • [11]Habermehl D, Parkitna JR, Kaden S, Brügger B, Wieland F, Gröne H-J, Schütz G: Glucocorticoid activity during lung maturation is essential in mesenchymal and less in alveolar epithelial cells. Mol Endocrinol 2011, 25(8):1280-1288.
  • [12]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
  • [13]Smit A: RepeatMasker. 1996-2010. http://www.repeatmasker.org webcite
  • [14]Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei G, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes TR, Lemaire P, Ukkonen E, Kivioja T, Taipale J: DNA-binding specificities of human transcription factors. Cell 2013, 152(1–2):327-339.
  • [15]Grant CE, Bailey TL, Noble WS: FIMO: scanning for occurrences of a given motif. Bioinformatics 2011, 27(7):1017-1018.
  • [16]Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, et al.: ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 2012, 22(9):1813-1831.
  • [17]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [18]Kadauke S, Blobel GA: Chromatin loops in gene regulation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2009, 1789(1):17-25.
  • [19]Farnham PJ: Insights from genomic profiling of transcription factors. Nat Rev Genet 2009, 10(9):605-616.
  • [20]Mahony S, Auron PE, Benos PV: DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies. PLoS Comput Biol 2007, 3(3):61.
  • [21]Gilbert DG: Phylodendron. 1990. http://iubio.bio.indiana.edu/treeapp/phylodendron-doc.html webcite
  • [22]Cobaleda C, Pérez-Caro M, Vicente-Dueñas C, Sánchez-García I: Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu Rev Genet 2007, 41:41-61.
  • [23]Capdevila J, Tsukui T, Esteban CR, Zappavigna V, Belmonte JCI: Control of vertebrate limb outgrowth by the proximal factorMeis2 and distal antagonism of BMPs by gremlin. Mol Cell 1999, 4(5):839-849.
  • [24]Dai K, Hussain MM: NR2F1 disrupts synergistic activation of the MTTP gene transcription by HNF-4α and HNF-1α. J Lipid Res 2012, 53(5):901-908.
  • [25]Pioli PD, Dahlem TJ, Weis JJ, Weis JH: Deletion of Snai2 and Snai3 results in impaired physical development compounded by lymphocyte deficiency. PloS one 2013, 8(7):69216.
  • [26]Liberg D, Sigvardsson M, Åkerblad P: The EBF/Olf/Collier family of transcription factors: regulators of differentiation in cells originating from all three embryonal germ layers. Mol Cell Biol 2002, 22(24):8389-8397.
  • [27]Bird AD, Tan KH, Olsson PF, Zieba M, Flecknoe SJ, Liddicoat DR, Mollard R, Hooper SB, Cole TJ: Identification of glucocorticoid-regulated genes that control cell proliferation during murine respiratory development. J Physiol 2007, 585(1):187-201.
  • [28]Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE: Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 2007, 134(10):1991-2000.
  • [29]Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, etal: Dna binding of the glucocorticoid receptor is not essential for survival. Cell 1998, 93(4):531-541.
  • [30]Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009, 10:48. BioMed Central Full Text
  • [31]Kho AT, Bhattacharya S, Mecham BH, Hong J, Kohane IS, Mariani TJ: Expression profiles of the mouse lung identify a molecular signature of time-to-birth. Am J Respir Cell Mol Biol 2009, 40(1):47.
  • [32]Mariani TJ, Reed JJ, Shapiro SD: Expression profiling of the developing mouse lung: insights into the establishment of the extracellular matrix. Am J Respir Cell Mol Biol 2002, 26(5):541-548.
  • [33]Mariani TJ, Shapiro SD: Application of expression profiling to the developing lung: identification of putative regulatory networks controlling matrix production. Chest 2002, 121(3 Suppl):42-44.
  • [34]Chuang P-T, McMahon AP: Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 2003, 13(2):86-91.
  • [35]Minoo P: Transcriptional regulation of lung development: emergence of specificity. Respir Res 2000, 1(2):109-115. BioMed Central Full Text
  • [36]Weaver M, Dunn NR, Hogan B: Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 2000, 127(12):2695-2704.
  • [37]Perl A-KT, Hokuto I, Impagnatiello M-A, Christofori G, Whitsett JA: Temporal effects of sprouty on lung morphogenesis. Dev Biol 2003, 258(1):154-168.
  • [38]Chuang P-T, Kawcak T, McMahon AP: Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev 2003, 17(3):342-347.
  • [39]Bellusci S, Furuta Y, Rush MG, Henderson R, Winnier G, Hogan B: Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 1997, 124(1):53-63.
  • [40]Weaver M, Yingling JM, Dunn NR, Bellusci S, Hogan B: Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development 1999, 126(18):4005-4015.
  • [41]Hyatt BA, Shangguan X, Shannon JM: BMP4 modulates fibroblast growth factor-mediated induction of proximal and distal lung differentiation in mouse embryonic tracheal epithelium in mesenchyme-free culture. Dev Dyn 2002, 225(2):153-165.
  • [42]Li C, Xiao J, Hormi K, Borok Z, Minoo P: Wnt5a participates in distal lung morphogenesis. Dev Biol 2002, 248(1):68-81.
  • [43]Li C, Zhu N-L, Tan RC, Ballard PL, Derynck R, Minoo P: Transforming growth factor-β inhibits pulmonary surfactant protein B gene transcription through SMAD3 interactions with NKX2. 1 and HNF-3 transcription factors. J Biol Chem 2002, 277(41):38399-38408.
  • [44]Shi W, Heisterkamp N, Groffen J, Zhao J, Warburton D, Kaartinen V: Tgf-β3-null mutation does not abrogate fetal lung maturation in vivo by glucocorticoids. Am J Physiol Lung Cell Mol Physiol 1999, 277(6):1205-1213.
  • [45]Xu Y, Wang Y, Besnard V, Ikegami M, Wert SE, Heffner C, Murray SA, Donahue LR, Whitsett JA: Transcriptional programs controlling perinatal lung maturation. PloS one 2012, 7(8):37046.
  • [46]Cole TJ, Solomon NM, Van Driel R, Monk JA, Bird D, Richardson SJ, Dilley RJ, Hooper SB: Altered epithelial cell proportions in the fetal lung of glucocorticoid receptor null mice. Am J Respir Cell Mol Biol 2004, 30(5):613-619.
  • [47]Gründer A, Ebel TT, Mallo M, Schwarzkopf G, Shimizu T, Sippel AE, Schrewe H: Nuclear factor IB (Nfib) deficient mice have severe lung hypoplasia. Mech Dev 2002, 112(1):69-77.
  • [48]Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, Myers RM: Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res 2009, 19(12):2163-2171.
  • [49]Polman JAE, Welten JE, Bosch DS, de Jonge RT, Balog J, van der Maarel SM, de Kloet ER, Datson NA: A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci 2012, 13:118. BioMed Central Full Text
  • [50]Yu C-Y, Mayba O, Lee JV, Tran J, Harris C, Speed TP, Wang J-C: Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One 2010, 5(12):15188.
  • [51]John S, Sabo PJ, Thurman RE, Sung M-H, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA: Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 2011, 43(3):264-268.
  • [52]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-359.
  • [53]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9(9):137. BioMed Central Full Text
  • [54]Jiang J, Chan Y-S, Loh Y-H, Cai J, Tong G-Q, Lim C-A, Robson P, Zhong S, Ng H-H: A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 2008, 10(3):353-360.
  • [55]Wolfe DA, Hollander M: Nonparametric Statistical Methods. New York: John Wiley; 1973.
  文献评价指标  
  下载次数:2次 浏览次数:3次