期刊论文详细信息
BMC Systems Biology
Metabolomics of ApcMin/+ mice genetically susceptible to intestinal cancer
Henri Brunengraber1  Nathan A Berger1  Stephanie K Doerner3  Yana Sandlers2  Jean-Eudes J Dazard1 
[1] Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA;Kennedy Krieger Institute, Baltimore, MA 21205, USA;Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
关键词: High-throughput mass spectrometry;    Association and correlation analysis;    Tumor development;    Fat diet;    Metabolomics;   
Others  :  864934
DOI  :  10.1186/1752-0509-8-72
 received in 2014-02-25, accepted in 2014-06-10,  发布年份 2014
PDF
【 摘 要 】

Background

To determine how diets high in saturated fat could increase polyp formation in the mouse model of intestinal neoplasia, ApcMin/+, we conducted large-scale metabolome analysis and association study of colon and small intestine polyp formation from plasma and liver samples of ApcMin/+ vs. wild-type littermates, kept on low vs. high-fat diet. Label-free mass spectrometry was used to quantify untargeted plasma and acyl-CoA liver compounds, respectively. Differences in contrasts of interest were analyzed statistically by unsupervised and supervised modeling approaches, namely Principal Component Analysis and Linear Model of analysis of variance. Correlation between plasma metabolite concentrations and polyp numbers was analyzed with a zero-inflated Generalized Linear Model.

Results

Plasma metabolome in parallel to promotion of tumor development comprises a clearly distinct profile in ApcMin/+ mice vs. wild type littermates, which is further altered by high-fat diet. Further, functional metabolomics pathway and network analyses in ApcMin/+ mice on high-fat diet revealed associations between polyp formation and plasma metabolic compounds including those involved in amino-acids metabolism as well as nicotinamide and hippuric acid metabolic pathways. Finally, we also show changes in liver acyl-CoA profiles, which may result from a combination of ApcMin/+-mediated tumor progression and high fat diet. The biological significance of these findings is discussed in the context of intestinal cancer progression.

Conclusions

These studies show that high-throughput metabolomics combined with appropriate statistical modeling and large scale functional approaches can be used to monitor and infer changes and interactions in the metabolome and genome of the host under controlled experimental conditions. Further these studies demonstrate the impact of diet on metabolic pathways and its relation to intestinal cancer progression. Based on our results, metabolic signatures and metabolic pathways of polyposis and intestinal carcinoma have been identified, which may serve as useful targets for the development of therapeutic interventions.

【 授权许可】

   
2014 Dazard et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726021245334.pdf 3609KB PDF download
117KB Image download
65KB Image download
134KB Image download
130KB Image download
164KB Image download
124KB Image download
63KB Image download
【 图 表 】

【 参考文献 】
  • [1]Fiehn O: Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol 2002, 48:155-171.
  • [2]Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW: Potential of metabolomics as a functional genomics tool. Trends Plant Sci 2004, 9:418-425.
  • [3]Griffiths WJ, Karu K, Hornshaw M, Woffendin G, Wang Y: Metabolomics and metabolite profiling: past heroes and future developments. Eur J Mass Spectrom 2007, 13:45-50.
  • [4]Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C: Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 2007, 76:495-511.
  • [5]Weckwerth W, Fiehn O: Can we discover novel pathways using metabolomic analysis? Curr Opin Biotechnol 2002, 13:156-160.
  • [6]Steuer R, Kurths J, Fiehn O, Weckwerth W: Observing and interpreting correlations in metabolomic networks. Bioinformatics 2003, 19:1019-1026.
  • [7]Kuhara T: Noninvasive human metabolome analysis for differential diagnosis of inborn errors of metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 2007, 855:42-50.
  • [8]Quinones MP, Kaddurah-Daouk R: Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis 2009, 35:165-176.
  • [9]Lewis GD, Asnani A, Gerszten RE: Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol 2008, 52:117-123.
  • [10]Giovane A, Balestrieri A, Napoli C: New insights into cardiovascular and lipid metabolomics. J Cell Biochem 2008, 105:648-654.
  • [11]Xue R, Lin Z, Deng C, Dong L, Liu T, Wang J, Shen X: A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2008, 22:3061-3068.
  • [12]Montrose DC, Zhou XK, Kopelovich L, Yantiss RK, Karoly ED, Subbaramaiah K, Dannenberg AJ: Metabolic profiling, a noninvasive approach for the detection of experimental colorectal neoplasia. Cancer Prev Res (Phila) 2012, 5:1358-1367.
  • [13]Kaddurah-Daouk R, Kristal BS, Weinshilboum RM: Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 2008, 48:653-683.
  • [14]Atherton HJ, Bailey NJ, Zhang W, Taylor J, Major H, Shockcor J, Clarke K, Griffin JL: A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-alpha null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol Genomics 2006, 27:178-186.
  • [15]Griffin JL: Understanding mouse models of disease through metabolomics. Curr Opin Chem Biol 2006, 10:309-315.
  • [16]Major HJ, Williams R, Wilson AJ, Wilson ID: A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Commun Mass Spectrom 2006, 20:3295-3302.
  • [17]Wishart DS: Applications of metabolomics in drug discovery and development. Drugs R D 2008, 9:307-322.
  • [18]Nicholas PC, Kim D, Crews FT, Macdonald JM: 1H NMR-based metabolomic analysis of liver, serum, and brain following ethanol administration in rats. Chem Res Toxicol 2008, 21:408-420.
  • [19]Kim YS, Maruvada P, Milner JA: Metabolomics in biomarker discovery: future uses for cancer prevention. Future Oncol 2008, 4:93-102.
  • [20]Spratlin JL, Serkova NJ, Eckhardt SG: Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 2009, 15:431-440.
  • [21]Serkova NJ, Spratlin JL, Eckhardt SG: NMR-based metabolomics: translational application and treatment of cancer. Curr Opin Mol Ther 2007, 9:572-585.
  • [22]Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, Niesporek S, Noske A, Buckendahl A, Dietel M, Fiehn O: Metabolite profiling of human colon carcinoma–deregulation of TCA cycle and amino acid turnover. Mol Cancer 2008, 7:72-87.
  • [23]Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Konsgen D, Dietel M, Fiehn O: Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 2006, 66:10795-10804.
  • [24]Griffin JL, Kauppinen RA: Tumour metabolomics in animal models of human cancer. J Proteome Res 2007, 6:498-505.
  • [25]Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 2009, 69:4918-4925.
  • [26]Claudino WM, Quattrone A, Biganzoli L, Pestrin M, Bertini I, Di LA: Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 2007, 25:2840-2846.
  • [27]Budczies J, Denkert C, Muller BM, Brockmoller SF, Klauschen F, Gyorffy B, Dietel M, Richter-Ehrenstein C, Marten U, Salek RM, Salek RM, Griffin JL, Hilvo M, Oresic M, Wohlgemuth G, Fiehn O: Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study. BMC Genomics 2012, 13:334.
  • [28]Nordstrom A, Lewensohn R: Metabolomics: moving to the clinic. J Neuroimmune Pharmacol 2009.
  • [29]Denkert C, Bucher E, Hilvo M, Salek R, Oresic M, Griffin J, Brockmoller S, Klauschen F, Loibl S, Barupal DK, Budczies J, Iljin K, Nekljudova V, Fiehn O: Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery. Genome Med 2012, 4:37.
  • [30]Yu CF, Whiteley L, Carryl O, Basson MD: Differential dietary effects on colonic and small bowel neoplasia in C57BL/6 J Apc Min/+Mice. Dig Dis Sci 2001, 46:1367-1380.
  • [31]Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G, Subramaniam S, Berger NA, Croniger C, Lambris JD, Nadeau JH: Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet 2009, 18:2975-2988.
  • [32]Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, Norat T: Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose–response meta-analysis of prospective studies. BMJ 2011, 343:d6617.
  • [33]Vargas AJ, Thompson PA: Diet and nutrient factors in colorectal cancer risk. Nutr Clin Pract 2012, 27:613-623.
  • [34]Meyerhardt JA, Sato K, Niedzwiecki D, Ye C, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A, Benson A, Wigler DS, Venook A, Fuchs CS: Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Natl Cancer Inst 2012, 104:1702-1711.
  • [35]Giovannucci E, Goldin B: The role of fat, fatty acids, and total energy intake in the etiology of human colon cancer. Am J Clin Nutr 1997, 66:1564S-1571S.
  • [36]Kim YS, Milner JA: Dietary modulation of colon cancer risk. J Nutr 2007, 137:2576S-2579S.
  • [37]Calle EE, Thun MJ: Obesity and cancer. Oncogene 2004, 23:6365-6378.
  • [38]Johnson IT, Lund EK: Review article: nutrition, obesity and colorectal cancer. Aliment Pharmacol Ther 2007, 26:161-181.
  • [39]Frezza EE, Wachtel MS, Chiriva-Internati M: Influence of obesity on the risk of developing colon cancer. Gut 2006, 55:285-291.
  • [40]Gunter MJ, Leitzmann MF: Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J Nutr Biochem 2006, 17:145-156.
  • [41]Sung MK, Yeon JY, Park SY, Park JH, Choi MS: Obesity-induced metabolic stresses in breast and colon cancer. Ann N Y Acad Sci 2011, 1229:61-68.
  • [42]Gonzalez AS, Guerrero DB, Soto MB, Diaz SP, Martinez-Olmos M, Vidal O: Metabolic syndrome, insulin resistance and the inflammation markers C-reactive protein and ferritin. Eur J Clin Nutr 2006, 60:802-809.
  • [43]John BJ, Irukulla S, Abulafi AM, Kumar D, Mendall MA: Systematic review: adipose tissue, obesity and gastrointestinal diseases. Aliment Pharmacol Ther 2006, 23:1511-1523.
  • [44]McNally JB, Kirkpatrick ND, Hariri LP, Tumlinson AR, Besselsen DG, Gerner EW, Utzinger U, Barton JK: Task-based imaging of colon cancer in the Apc(Min/+) mouse model. Appl Opt 2006, 45:3049-3062.
  • [45]Backshall A, Alferez D, Teichert F, Wilson ID, Wilkinson RW, Goodlad RA, Keun HC: Detection of metabolic alterations in non-tumor gastrointestinal tissue of the Apc(Min/+) mouse by (1)H MAS NMR spectroscopy. J Proteome Res 2009, 8:1423-1430.
  • [46]Mai V, Colbert LH, Berrigan D, Perkins SN, Pfeiffer R, Lavigne JA, Lanza E, Haines DC, Schatzkin A, Hursting SD: Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res 2003, 63:1752-1755.
  • [47]van Kranen HJ, van Iersel PW, Rijnkels JM, Beems DB, Alink GM, van Kreijl CF: Effects of dietary fat and a vegetable-fruit mixture on the development of intestinal neoplasia in the ApcMin mouse. Carcinogenesis 1998, 19:1597-1601.
  • [48]Doerner SK, Leung ES, Berger NA, Nadeau JH: High Dietary fat Promotes Inflammation and Intestinal Neoplasia, Independently of Diet-Induced Obesity, in B6.Apc Min/+Congenic-Consomic Mouse Strains. In Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research April 2–6; Orlando, Florida. AACR Cancer Research; 2011.
  • [49]Ju J, Kwak Y, Hao X, Yang CS: Inhibitory effects of calcium against intestinal cancer in human colon cancer cells and Apc(Min/+) mice. Nutr Res Pract 2012, 6:396-404.
  • [50]Stein SE: An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 1999, 10:770-781.
  • [51]Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN: Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem 2007, 79:966-973.
  • [52]Schlatzer DM, Dazard JE, Ewing RM, Ilchenko S, Tomecheko S, Eid S, Ho V, Yanik G, Chance MR, Cooke KR: Biomarker discovery and predictive models for disease progression in idiopathic pneumonia syndrome following allogeneic stem cell transplantation. Mol Cell Proteomics 2012. in press
  • [53]Wang P, Tang H, Zhang H, Whiteaker J, Paulovich AG, McIntosh M: Normalization regarding non-random missing values in high-throughput mass spectrometry data. In Pac Symp Biocomput; Lihue, Hawaii. World Scientific Press; 2006:315-326.
  • [54]Dazard J-E, Rao JS: Joint adaptive mean-variance regularization and variance stabilization of high dimensional data. Comput Statist Data Anal 2012, 56:2317-2333.
  • [55]Dazard J-E, Xu H, Santana A, Rao JS: R package MVR. 2011.
  • [56]Griffin JL, Sang E, Evens T, Davies K, Clarke K: Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy. FEBS Lett 2002, 530:109-116.
  • [57]Hotelling H: Analysis of a complex of statistical variables into principal components. J Educ Psychol 1933, 24:417-441.
  • [58]Efron B: Robbins, empirical Bayes and microarrays. Ann Stat 2003, 31:366-378.
  • [59]Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 2001, 96:1151-1160.
  • [60]Lonnstedt I, Rimini R, Nilsson P: Empirical bayes microarray ANOVA and grouping cell lines by equal expression levels. Stat Appl Genet Mol Biol 2005, 4:Article7.
  • [61]Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW: On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J Comput Biol 2001, 8:37-52.
  • [62]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  • [63]Kendziorski CM, Newton MA, Lan H, Gould MN: On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat Med 2003, 22:3899-3914.
  • [64]Newton MA, Noueiry A, Sarkar D, Ahlquist P: Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics (Oxford, England) 2004, 5:155-176.
  • [65]Dabney A, Storey JD: Contributed R package Qvalue: Q-Value Estimation for False Discovery Rate Control. In Book Contributed R package Qvalue: Q-Value Estimation for False Discovery Rate Control. City: Editor ed.^eds; 2003.
  • [66]Smyth GK, Michaud J, Scott HS: Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics (Oxford, England) 2005, 21:2067-2075.
  • [67]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc 1995, 57:289-300.
  • [68]Storey JD: A direct approach to false discovery rates. J R Statist Soc 2002, 64(3):479-498.
  • [69]Storey JD: The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 2003, 31:2013-2035.
  • [70]Lambert D: Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 1992, 34:1-14.
  • [71]Mullahy J: Specification and testing of some modified count data models. J Econometrics 1986, 33:341-365.
  • [72]McCullagh P, Nelder JA: Generalized Linear Models. Boca Raton, London, New York, Washington D.C: Chapman & Hall/CRC; 1989.
  • [73]Nelder JA, Wedderburn RWM: Generalized linear models. J R Statist Soc 1972, 135:370-384.
  • [74]Zeileis A, Kleiber C, Jackman S: Regression models for count data in R. J Stat Softw 2008, 27:1-25.
  • [75]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
  • [76]Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW, Cavalcoli JD, Athey BD, Omenn GS, Burant CF, Jagadish HV: Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics (Oxford, England) 2010, 26:971-973.
  • [77]Duren W, Weymouth T, Hull T, Omenn GS, Athey B, Burant C, Karnovsky A: MetDisease--connecting metabolites to diseases via literature. Bioinformatics (Oxford, England) 2014. doi:10.1093/bioinformatics/btu179
  • [78]Barabasi AL, Albert R: Emergence of scaling in random networks. Science 1999, 286:509-512.
  • [79]Liu Y: Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 2006, 9:230-234.
  • [80]Ouali F, Djouadi F, Bastin J: Effects of fatty acids on mitochondrial beta-oxidation enzyme gene expression in renal cell lines. Am J Physiol Renal Physiol 2002, 283:F328-F334.
  • [81]Khasawneh J, Schulz MD, Walch A, Rozman J, de Hrabe AM, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM, Kloppel G, Sipos B, Greten FR, Arkan MC: Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci U S A 2009, 106:3354-3359.
  • [82]Medina MA, Sanchez-Jimenez F, Marquez J, Rodriguez QA, Nunez dCI: Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem 1992, 113:1-15.
  • [83]Argiles JM, zcon-Bieto J: The metabolic environment of cancer. Mol Cell Biochem 1988, 81:3-17.
  • [84]Tan Y, Zavala J Sr, Xu M, Zavala J Jr, Hoffman RM: Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients. Anticancer Res 1996, 16:3937-3942.
  • [85]de Vogel S, Dindore V, van Engeland M, Goldbohm RA, van den Brandt PA, Weijenberg MP: Dietary folate, methionine, riboflavin, and vitamin B-6 and risk of sporadic colorectal cancer. J Nutr 2008, 138:2372-2378.
  • [86]Takata Y, Cai Q, Beeghly-Fadiel A, Li H, Shrubsole MJ, Ji BT, Yang G, Chow WH, Gao YT, Zheng W, Shu XO: Dietary B vitamin and methionine intakes and lung cancer risk among female never smokers in China. Cancer Causes Control 2012, 23:1965-1975.
  • [87]Epner DE: Can dietary methionine restriction increase the effectiveness of chemotherapy in treatment of advanced cancer? J Am Coll Nutr 2001, 20:443S-449S. discussion 473S-475S
  • [88]Kim YI: Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev 2004, 13:511-519.
  • [89]Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG: PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010, 10:293-301.
  • [90]Krishnakumar R, Kraus WL: The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010, 39:8-24.
  • [91]Solier S, Zhang YW, Ballestrero A, Pommier Y, Zoppoli G: DNA damage response pathways and cell cycle checkpoints in colorectal cancer: current concepts and future perspectives for targeted treatment. Curr Cancer Drug Targets 2012, 12:356-371.
  • [92]Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI: Modelling Myc inhibition as a cancer therapy. Nature 2008, 455:679-683.
  • [93]Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B, Larsson LG, Hermeking H: The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci U S A 2012, 109:E187-E196.
  • [94]Thangaraju M, Cresci G, Itagaki S, Mellinger J, Browning DD, Berger FG, Prasad PD, Ganapathy V: Sodium-coupled transport of the short chain fatty acid butyrate by SLC5A8 and its relevance to colon cancer. J Gastrointest Surg 2008, 12:1773-1781.
  • [95]Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S, Prasad PD: Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J 2008, 10:193-199.
  • [96]Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472:57-63.
  • [97]Plottel CS, Blaser MJ: Microbiome and malignancy. Cell Host Microbe 2011, 10:324-335.
  • [98]Carvalho BM, Saad MJ: Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediators Inflamm 2013, 2013:986734.
  文献评价指标  
  下载次数:0次 浏览次数:2次