期刊论文详细信息
BMC Genomics
Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)
Zong-Ming (Max) Cheng1  Mario Pezzotti2  Giovanni Battista Tornielli2  Silvia Dal Santo2  Bin Cai3  Fei Chen3  Nana Chen3  Jinyi Liu3 
[1] Department of Plant Sciences, University of Tennessee, 37996 Knoxville, TN, USA;Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy;College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, China
关键词: Heat stress response;    Drought response;    Gene expression;    Grapevine;    bZIP transcription factor family;   
Others  :  1217475
DOI  :  10.1186/1471-2164-15-281
 received in 2013-08-03, accepted in 2014-03-31,  发布年份 2014
PDF
【 摘 要 】

Background

Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited.

Results

We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms.

Conclusions

The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions.

【 授权许可】

   
2014 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706201013549.pdf 3433KB PDF download
Figure 7. 147KB Image download
Figure 6. 97KB Image download
Figure 5. 196KB Image download
Figure 4. 114KB Image download
Figure 3. 56KB Image download
Figure 2. 98KB Image download
Figure 1. 184KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B: PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 2010, 38(Database issue):D822-D827.
  • [2]Nijhawan A, Jain M, Tyagi AK, Khurana JP: Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 2008, 146(2):333-350.
  • [3]Lee SC, Choi HW, Hwang IS, du Choi S, Hwang BK: Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 2006, 224(5):1209-1225.
  • [4]Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, b ZIPRG: bZIP transcription factors in Arabidopsis. Trends Plant Sci 2002, 7(3):106-111.
  • [5]Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 2006, 103(6):1988-1993.
  • [6]Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY: Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 2008, 228(2):225-240.
  • [7]Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY: Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 2011, 53(3):212-231.
  • [8]Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D: Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 2012, 19(6):463-476.
  • [9]Toh S, McCourt P, Tsuchiya Y: HY5 is involved in strigolactone-dependent seed germination in Arabidopsis. Plant Signal Behav 2012, 7(5):556-558.
  • [10]Izawa T, Foster R, Nakajima M, Shimamoto K, Chua NH: The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 1994, 6(9):1277-1287.
  • [11]Chuang CF, Running MP, Williams RW, Meyerowitz EM: The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev 1999, 13(3):334-344.
  • [12]Walsh J, Freeling M: The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J 1999, 19(4):489-495.
  • [13]Strathmann A, Kuhlmann M, Heinekamp T, Droge-Laser W: BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J 2001, 28(4):397-408.
  • [14]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T: FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 2005, 309(5737):1052-1056.
  • [15]Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D: Integration of spatial and temporal information during floral induction in Arabidopsis. Science 2005, 309(5737):1056-1059.
  • [16]Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Z, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON: Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 2006, 142(4):1523-1536.
  • [17]Iven T, Strathmann A, Bottner S, Zwafink T, Heinekamp T, Guivarc’h A, Roitsch T, Droge-Laser W: Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J 2010, 63(1):155-166.
  • [18]Gibalova A, Renak D, Matczuk K, Dupl’akova N, Chab D, Twell D, Honys D: AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol 2009, 70(5):581-601.
  • [19]Yin Y, Zhu Q, Dai S, Lamb C, Beachy RN: RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 1997, 16(17):5247-5259.
  • [20]Guan Y, Ren H, Xie H, Ma Z, Chen F: Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 2009, 60(2):207-217.
  • [21]Shiota H, Ko S, Wada S, Otsu CT, Tanaka I, Kamada H: A carrot G-box binding factor-type basic region/leucine zipper factor DcBZ1 is involved in abscisic acid signal transduction in somatic embryogenesis. Plant Physiol Biochem 2008, 46(5–6):550-558.
  • [22]Holm M, Ma LG, Qu LJ, Deng XW: Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 2002, 16(10):1247-1259.
  • [23]Huang X, Ouyang X, Yang P, Lau OS, Li G, Li J, Chen H, Deng XW: Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell 2012, 24(11):4590-4606.
  • [24]Chen H, Chen W, Zhou J, He H, Chen L, Deng XW: Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 2012, 193–194:8-17.
  • [25]Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K: AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 2010, 61(4):672-685.
  • [26]Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya, Tsai YC, Chan MT: A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 2010, 231(6):1459-1473.
  • [27]Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ, Li SH: Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 2012, 12:174. BioMed Central Full Text
  • [28]Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T: LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol 2005, 46(10):1623-1634.
  • [29]Liu C, Wu Y, Wang X: bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 2012, 235(6):1157-1169.
  • [30]Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C: Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J 2005, 44(1):100-113.
  • [31]Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH: ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 2002, 32(3):317-328.
  • [32]Choi H, Hong J, Ha J, Kang J, Kim SY: ABFs, a family of ABA-responsive element binding factors. J Biol Chem 2000, 275(3):1723-1730.
  • [33]Li Z, Zhang L, Yu Y, Quan R, Zhang Z, Zhang H, Huang R: The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J 2011, 68(1):88-99.
  • [34]Zander M, Chen S, Imkampe J, Thurow C, Gatz C: Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 2012, 5(4):831-840.
  • [35]Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449(7161):463-467.
  • [36]Malacarne G, Perazzolli M, Cestaro A, Sterck L, Fontana P, Van de Peer Y, Viola R, Velasco R, Salamini F: Deconstruction of the (paleo)polyploid grapevine genome based on the analysis of transposition events involving NBS resistance genes. PLoS One 2012, 7(1):e29762.
  • [37]Tak H, Mhatre M: Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma 2013, 250(1):333-345.
  • [38]Boneh U, Biton I, Schwartz A, Ben-Ari G: Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci 2012, 187:89-96.
  • [39]Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F: The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant physiol 2014, 164(1):365-383.
  • [40]Guillaumie S, Fouquet R, Kappel C, Camps C, Terrier N, Moncomble D, Dunlevy JD, Davies C, Boss PK, Delrot S: Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol 2011, 11:165. BioMed Central Full Text
  • [41]Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC: Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 2007, 7(2):111-134.
  • [42]Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H: Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 2006, 6:32. BioMed Central Full Text
  • [43]Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A: Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res 2001, 11(12):2101-2114.
  • [44]Wang N, Zheng Y, Xin H, Fang L, Li S: Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep 2013, 32(1):61-75.
  • [45]Suckow M, von Wilcken-Bergmann B, Muller-Hill B: Identification of three residues in the basic regions of the bZIP proteins GCN4, C/EBP and TAF-1 that are involved in specific DNA binding. EMBO J 1993, 12(3):1193-1200.
  • [46]Fujita Y, Yoshida T, Yamaguchi-Shinozaki K: Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 2013, 147(1):15-27.
  • [47]Finkelstein RR, Lynch TJ: The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 2000, 12(4):599-609.
  • [48]Ji L, Wang J, Ye M, Li Y, Guo B, Chen Z, Li H, An X: Identification and characterization of the Populus AREB/ABF subfamily. J Integr Plant Biol 2013, 55(2):177-186.
  • [49]Suckow M, Schwamborn K, Kisters-Woike B, von Wilcken-Bergmann B, Muller-Hill B: Replacement of invariant bZip residues within the basic region of the yeast transcriptional activator GCN4 can change its DNA binding specificity. Nucleic Acids Res 1994, 22(21):4395-4404.
  • [50]Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M: The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 2012, 24(9):3489-3505.
  • [51]Bensmihen S, Giraudat J, Parcy F: Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot 2005, 56(412):597-603.
  • [52]Yamamoto A, Kagaya Y, Toyoshima R, Kagaya M, Takeda S, Hattori T: Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. Plant J 2009, 58(5):843-856.
  • [53]Kesarwani M, Yoo J, Dong X: Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 2007, 144(1):336-346.
  • [54]Onate L, Vicente-Carbajosa J, Lara P, Diaz I, Carbonero P: Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm. J Biol Chem 1999, 274(14):9175-9182.
  • [55]Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M: The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 2008, 3(8):e2944.
  • [56]Chen F, Fasoli M, Tornielli GB, Dal Santo S, Pezzotti M, Zhang L, Cai B, Cheng ZM: The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS One 2013, 8(12):e80818.
  • [57]Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW: Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473(7345):97-100.
  • [58]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14(9):755-763.
  • [59]Letunic I, Doerks T, Bork P: SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 2012, 40(Database issue):D302-D305.
  • [60]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25(24):4876-4882.
  • [61]Guo AY, Zhu QH, Chen X, Luo JC: GSDS: a gene structure display server. Yi Chuan 2007, 29(8):1023-1026.
  • [62]Mar JC, Wells CA, Quackenbush J: Defining an informativeness metric for clustering gene expression data. Bioinformatics 2011, 27(8):1094-1100.
  文献评价指标  
  下载次数:113次 浏览次数:12次