期刊论文详细信息
BMC Cancer
A Cross-Species Analysis of a Mouse Model of Breast Cancer-Specific Osteolysis and Human Bone Metastases Using Gene Expression Profiling
Anguraj Sadanandam5  Mitsuru Futakuchi3  Costas A Lyssiotis2  William J Gibb1  Rakesh K Singh4 
[1] Department of Life Sciences, Lawrence Berkeley National Lab, Berkeley, CA 94702, USA
[2] Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
[3] Department of Molecular Toxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
[4] Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
[5] Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
关键词: thiazide;    tumor-bone microenvironment;    bone metastasis;    Osteolysis;   
Others  :  1080831
DOI  :  10.1186/1471-2407-11-304
 received in 2010-08-02, accepted in 2011-07-20,  发布年份 2011
PDF
【 摘 要 】

Background

Breast cancer is the second leading cause of cancer-related death in women in the United States. During the advanced stages of disease, many breast cancer patients suffer from bone metastasis. These metastases are predominantly osteolytic and develop when tumor cells interact with bone. In vivo models that mimic the breast cancer-specific osteolytic bone microenvironment are limited. Previously, we developed a mouse model of tumor-bone interaction in which three mouse breast cancer cell lines were implanted onto the calvaria. Analysis of tumors from this model revealed that they exhibited strong bone resorption, induction of osteoclasts and intracranial penetration at the tumor bone (TB)-interface.

Methods

In this study, we identified and used a TB microenvironment-specific gene expression signature from this model to extend our understanding of the metastatic bone microenvironment in human disease and to predict potential therapeutic targets.

Results

We identified a TB signature consisting of 934 genes that were commonly (among our 3 cell lines) and specifically (as compared to tumor-alone area within the bone microenvironment) up- and down-regulated >2-fold at the TB interface in our mouse osteolytic model. By comparing the TB signature with gene expression profiles from human breast metastases and an in vitro osteoclast model, we demonstrate that our model mimics both the human breast cancer bone microenvironment and osteoclastogenesis. Furthermore, we observed enrichment in various signaling pathways specific to the TB interface; that is, TGF-β and myeloid self-renewal pathways were activated and the Wnt pathway was inactivated. Lastly, we used the TB-signature to predict cyclopenthiazide as a potential inhibitor of the TB interface.

Conclusion

Our mouse breast cancer model morphologically and genetically resembles the osteoclastic bone microenvironment observed in human disease. Characterization of the gene expression signature specific to the TB interface in our model revealed signaling mechanisms operative in human breast cancer metastases and predicted a therapeutic inhibitor of cancer-mediated osteolysis.

【 授权许可】

   
2011 Sadanandam et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141203050401128.pdf 1124KB PDF download
Figure 4. 69KB Image download
Figure 3. 110KB Image download
Figure 2. 79KB Image download
Figure 1. 201KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Roodman GD: Mechanisms of bone metastasis. The New England journal of medicine 2004, 350(16):1655-1664.
  • [2]Coleman RE: Skeletal complications of malignancy. Cancer 1997, 80(8 Suppl):1588-1594.
  • [3]Mundy GR: Mechanisms of bone metastasis. Cancer 1997, 80(8 Suppl):1546-1556.
  • [4]Mundy GR: Metastasis to bone: causes, consequences and therapeutic opportunities. Nature reviews 2002, 2(8):584-593.
  • [5]Rose AA, Siegel PM: Emerging therapeutic targets in breast cancer bone metastasis. Future oncology (London, England) 6(1):55-74.
  • [6]Suva LJ, Griffin RJ, Makhoul I: Mechanisms of bone metastases of breast cancer. Endocrine-related cancer 2009, 16(3):703-713.
  • [7]Arguello F, Baggs RB, Frantz CN: A murine model of experimental metastasis to bone and bone marrow. Cancer research 1988, 48(23):6876-6881.
  • [8]Harms JF, Welch DR: MDA-MB-435 human breast carcinoma metastasis to bone. Clinical & experimental metastasis 2003, 20(4):327-334.
  • [9]Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, Gillespie MT: Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 1999, 140(10):4451-4458.
  • [10]Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R: A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 2001, 16(8):1486-1495.
  • [11]Lynch CC, Hikosaka A, Acuff HB, Martin MD, Kawai N, Singh RK, Vargo-Gogola TC, Begtrup JL, Peterson TE, Fingleton B, Shirai T, Matrisian LM, Futakuchi M: MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer cell 2005, 7(5):485-496.
  • [12]Futakuchi M, Nannuru KC, Varney ML, Sadanandam A, Nakao K, Asai K, Shirai T, Sato SY, Singh RK: Transforming growth factor-beta signaling at the tumor-bone interface promotes mammary tumor growth and osteoclast activation. Cancer science 2009, 100(1):71-81.
  • [13]Nannuru KC, Futakuchi M, Sadanandam A, Wilson TJ, Varney ML, Myers KJ, Li X, Marcusson EG, Singh RK: Enhanced expression and shedding of receptor activator of NF-kappaB ligand during tumor-bone interaction potentiates mammary tumor-induced osteolysis. Clinical & experimental metastasis 2009, 26(7):797-808.
  • [14]Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK: Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer research 2010, 70(9):3494-3504.
  • [15]Wilson TJ, Nannuru KC, Futakuchi M, Sadanandam A, Singh RK: Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand. Cancer research 2008, 68(14):5803-5811.
  • [16]Aslakson CJ, Miller FR: Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer research 1992, 52(6):1399-1405.
  • [17]Murphy BO, Joshi S, Kessinger A, Reed E, Sharp JG: A murine model of bone marrow micrometastasis in breast cancer. Clinical & experimental metastasis 2002, 19(7):561-569.
  • [18]Varney ML, Singh S, Backora M, Chen Z, Singh RK: Lymphangiogenesis and anti-tumor immune responses. Current molecular medicine 2009, 9(6):694-701.
  • [19]Wilson CL, Miller CJ: Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics (Oxford, England) 2005, 21(18):3683-3685.
  • [20]Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y: Analysis of gene expression data using BRB-ArrayTools. Cancer informatics 2007, 3:11-17.
  • [21]Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R: NCBI GEO: archive for high-throughput functional genomic data. Nucleic acids research 2009, (37 Database):D885-890.
  • [22]Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J: Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer cell 2009, 16(1):67-78.
  • [23]Lou Y, Preobrazhenska O, auf dem Keller U, Sutcliffe M, Barclay L, McDonald PC, Roskelley C, Overall CM, Dedhar S: Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev Dyn 2008, 237(10):2755-2768.
  • [24]Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, Tamura T, Ozato K, Choi Y, Ivashkiv LB, Takayanagi H, Kamijo R: Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nature medicine 2009, 15(9):1066-1071.
  • [25]Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer cell 2006, 10(6):529-541.
  • [26]Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer cell 2006, 10(6):515-527.
  • [27]Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, Reich M, Chan JA, Glickman JN, Ikeda K, Hashimoto M, Watanabe G, Daidone MG, Roayaie S, Schwartz M, Thung S, Salvesen HB, Gabriel S, Mazzaferro V, Bruix J, Friedman SL, Kumada H, Llovet JM, Golub TR: Gene expression in fixed tissues and outcome in hepatocellular carcinoma. The New England journal of medicine 2008, 359(19):1995-2004.
  • [28]Hoshida Y: Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PloS one 2010, 5(11):e15543.
  • [29]Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM, Marron JS: Adjustment of systematic microarray data biases. Bioinformatics (Oxford, England) 2004, 20(1):105-114.
  • [30]Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM: Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome biology 2007, 8(5):R76.
  • [31]Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP: Subclass mapping: identifying common subtypes in independent disease data sets. PloS one 2007, 2(11):e1195.
  • [32]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 1998, 95(25):14863-14868.
  • [33]Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP: GenePattern 2.0. Nature genetics 2006, 38(5):500-501.
  • [34]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 2000, 25(1):25-29.
  • [35]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic acids research (38 Database):D355-360.
  • [36]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(43):15545-15550.
  • [37]Goeman JJ, Oosting J, Cleton-Jansen AM, Anninga JK, van Houwelingen HC: Testing association of a pathway with survival using gene expression data. Bioinformatics (Oxford, England) 2005, 21(9):1950-1957.
  • [38]Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC: A global test for groups of genes: testing association with a clinical outcome. Bioinformatics (Oxford, England) 2004, 20(1):93-99.
  • [39]Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR: The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science (New York, NY 2006, 313(5795):1929-1935.
  • [40]Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nature genetics 2003, 33(1):49-54.
  • [41]Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397(6717):315-323.
  • [42]Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93(2):165-176.
  • [43]Boyle WJ, Simonet WS, Lacey DL: Osteoclast differentiation and activation. Nature 2003, 423(6937):337-342.
  • [44]Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic acids research 1999, 27(1):29-34.
  • [45]Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP: GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics (Oxford, England) 2007, 23(23):3251-3253.
  • [46]Brown AL, Wilkinson CR, Waterman SR, Kok CH, Salerno DG, Diakiw SM, Reynolds B, Scott HS, Tsykin A, Glonek GF, Goodall GJ, Solomon PJ, Gonda TJ, D'Andrea RJ: Genetic regulators of myelopoiesis and leukemic signaling identified by gene profiling and linear modeling. Journal of leukocyte biology 2006, 80(2):433-447.
  • [47]Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J: A multigenic program mediating breast cancer metastasis to bone. Cancer cell 2003, 3(6):537-549.
  • [48]Reddi AH, Roodman D, Freeman C, Mohla S: Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res 2003, 18(2):190-194.
  • [49]Stoughton RB: Applications of DNA microarrays in biology. Annual review of biochemistry 2005, 74:53-82.
  • [50]Wang Y, Miller DJ, Clarke R: Approaches to working in high-dimensional data spaces: gene expression microarrays. British journal of cancer 2008, 98(6):1023-1028.
  • [51]Sarkans U, Parkinson H, Lara GG, Oezcimen A, Sharma A, Abeygunawardena N, Contrino S, Holloway E, Rocca-Serra P, Mukherjee G, Shojatalab M, Kapushesky M, Sansone SA, Farne A, Rayner T, Brazma A: The ArrayExpress gene expression database: a software engineering and implementation perspective. Bioinformatics (Oxford, England) 2005, 21(8):1495-1501.
  • [52]Allison DB, Cui X, Page GP, Sabripour M: Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006, 7(1):55-65.
  • [53]Padua D, Massague J: Roles of TGFbeta in metastasis. Cell research 2009, 19(1):89-102.
  • [54]Neuhaus H, Rosen V, Thies RS: Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mechanisms of development 1999, 80(2):181-184.
  • [55]Yanagita M, Oka M, Watabe T, Iguchi H, Niida A, Takahashi S, Akiyama T, Miyazono K, Yanagisawa M, Sakurai T: USAG-1: a bone morphogenetic protein antagonist abundantly expressed in the kidney. Biochemical and biophysical research communications 2004, 316(2):490-500.
  • [56]Yanagita M: BMP modulators regulate the function of BMP during body patterning and disease progression. BioFactors (Oxford, England) 2009, 35(2):113-119.
  • [57]Krishnan V, Bryant HU, Macdougald OA: Regulation of bone mass by Wnt signaling. The Journal of clinical investigation 2006, 116(5):1202-1209.
  • [58]Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, Clezardin P, Garnero P: Increased Dickkopf-1 expression in breast cancer bone metastases. British journal of cancer 2007, 97(7):964-970.
  • [59]Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Developmental cell 2005, 8(5):751-764.
  • [60]Baron R, Rawadi G: Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 2007, 148(6):2635-2643.
  • [61]Nakanishi R, Akiyama H, Kimura H, Otsuki B, Shimizu M, Tsuboyama T, Nakamura T: Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res 2008, 23(2):271-277.
  • [62]Katoh M: Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. International journal of oncology 2001, 19(5):1003-1007.
  • [63]Lako M, Strachan T, Curtis AR, Lindsay S: Isolation and characterization of WNT8B, a novel human Wnt gene that maps to 10q24. Genomics 1996, 35(2):386-388.
  • [64]Ernst ME, Moser M: Use of diuretics in patients with hypertension. The New England journal of medicine 2009, 361(22):2153-2164.
  • [65]Brickman AS, Massry SG, Coburn JW: changes in serum and urinary calcium during treatment with hydrochlorothiazide: studies on mechanisms. The Journal of clinical investigation 1972, 51(4):945-954.
  • [66]Gamba G: Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiological reviews 2005, 85(2):423-493.
  • [67]Jones G, Nguyen T, Sambrook PN, Eisman JA: Thiazide diuretics and fractures: can meta-analysis help? J Bone Miner Res 1995, 10(1):106-111.
  • [68]LaCroix AZ, Wienpahl J, White LR, Wallace RB, Scherr PA, George LK, Cornoni-Huntley J, Ostfeld AM: Thiazide diuretic agents and the incidence of hip fracture. The New England journal of medicine 1990, 322(5):286-290.
  • [69]Wasnich RD, Benfante RJ, Yano K, Heilbrun L, Vogel JM: Thiazide effect on the mineral content of bone. The New England journal of medicine 1983, 309(6):344-347.
  • [70]Dvorak MM, De Joussineau C, Carter DH, Pisitkun T, Knepper MA, Gamba G, Kemp PJ, Riccardi D: Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by interacting with a sodium chloride co-transporter in bone. J Am Soc Nephrol 2007, 18(9):2509-2516.
  文献评价指标  
  下载次数:11次 浏览次数:20次