期刊论文详细信息
BMC Medical Genetics
Influence of IL17A polymorphisms on the aberrant methylation of DAPK and CDH1 in non-cancerous gastric mucosa
Tomoyuki Shibata1  Mikihiro Tsutsumi2  Tomomitsu Tahara1  Tomiyasu Arisawa2 
[1] Department of Gatroenterology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan;Department of Gastroenterology, Kanazawa Medical University, 1-1, Daigaku, Uchinada-machi, Ishikawa, 920-0293, Japan
关键词: CDH1;    DAPK;    Aberrant DNA methylation;    IL17A;   
Others  :  1177830
DOI  :  10.1186/1471-2350-13-59
 received in 2012-01-15, accepted in 2012-07-09,  发布年份 2012
PDF
【 摘 要 】

Background

CpG island aberrant methylation is shown to be an important mechanism in gene silencing. The important role of IL-17 in inflammatory response to H. pylori colonization has been indicated. We investigated the influence of IL17A polymorphisms, -197 G > A (rs2275913) and *1249 C > T (rs3748067), on the methylation of DAPK and CDH1.

Methods

Gastric mucosal samples were obtained from 401 subjects without malignancies. Methylation status of gene was determined by MSP. The genotyping of IL17A was performed by PCR-SSCP.

Results

Methylations of DAPK and CDH1 were seen in 196 and 149 of all 401 subjects, respectively. Overall, *1249 T carrier was associated with a decreased risk for DAPK methylation, whereas -197 G > A was not. In the subjects older than 60 years old, *1249 T carrier was more strongly associated with gene methylation and -197 A carrier tended to be associated with an increased risk for CDH1 methylation. When evaluating by inflammation promoting haplotype (-197 mutant carrier with *1249 homozygote), this haplotype had a more strongly increased risk for both DAPK and CDH1 methylations in comparatively older subjects. Both atrophy and metaplasia scores were significantly increased with age in -197 A carrier or *1249 CC homozygote, whereas were not in -197 GG homozygote or *1249 T carrier. PG I/II ratio was more significantly decreased in -197 A carrier than in GG homozygote under influence of H. pylori infection.

Conclusions

In -197 A allele carrier with *1249 CC homozygote, the methylations of both DAPK and CDH1 may be increased gradually, but more rapidly than the other genotypes, with age and altered gastric mucosal structure induced by H. pylori infection.

【 授权许可】

   
2012 Arisawa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150504031142418.pdf 330KB PDF download
Figure 3. 17KB Image download
Figure 2. 45KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Rutitzky LI, da Rosa JR L, Stadecker MJ: Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17. J Immunol 2005, 175:3920-3926.
  • [2]Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL: Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003, 278:1910-1914.
  • [3]Kolls JK, Linden A: Interleukin-17 family members and inflammation. Immunity 2004, 21:467-476.
  • [4]Fossiez F, Banchereau J, Murray R, Van Kooten C, Garrone P, Lebecque S: Interleukin-17. Int Rev Immunol 1998, 16:541-551.
  • [5]Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F, Pelletier JP: IL-17 stimulates the production and expression of proinflammatory and hematopoietic cytokines, IL-1b and TNF-a, by human macrophages. J Immunol 1998, 160:3513-3521.
  • [6]Laan M, Cui ZH, Hoshino H, Lotvall J, Sjostrand M, Gruenert DC, Skoogh BE, Linden A: Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 1999, 162:2347-2352.
  • [7]Luzza F, Parrello T, Monteleone G, Sebkova L, Romano M, Zarrilli R, Imeneo M, Pallone F: Up-Regulation of IL-17 Is Associated with Bioactive IL-8 Expression in Helicobacter pylori-Infected Human Gastric Mucosa. J Immunol 2000, 165:5332-5337.
  • [8]Sebkova L, Pellicano A, Monteleone G, Grazioli B, Guarnieri G, Imeneo M, Pallone F, Luzza F: Extracellular signal-regulated protein kinase mediates interleukin 17 (IL-17)-induced IL-8 secretion in Helicobacter pylori-infected human gastric epithelial cells. Infect Immun 2004, 72:5019-5026.
  • [9]Mizuno T, Ando T, Nobata K, Tsuzuki T, Maeda O, Watanabe O, Minami M, Ina K, Kusugami K, Peek RM, Goto H: Interleukin-17 levels in Helicobacter pylori-infected gastric mucosa and pathologic sequelae of colonization. World J Gastroenterol 2005, 11:6305-6311.
  • [10]Shiomi S, Toriie A, Imamura S, Konishi H, Mitsufuji S, Iwakura Y, Yamaoka Y, Ota H, Yamamoto T, Imanishi J, Kita M: IL-17 is involved in Helicobacter pylori-Induced Gastric Inflammatory Responses in a Mouse Model. Helicobacter 2008, 13:518-524.
  • [11]Parkin DM, Bray F, Ferlay J, Pisani P: (2005) Global cancer statistics, 2002. CA Cancer J Clin 2005, 55:74-108.
  • [12]Kamangar F, Dores GM, Anderson WF: Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006, 24:2137-2150.
  • [13]Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK: Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991, 325:1127-1131.
  • [14]Blaser MJ, Parsonnet J: Parasitism by the ‘slow’ bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J Clin Invest 1994, 94:4-8.
  • [15]Huang JQ, Sridhar S, Chen Y, Hunt RH: Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 1998, 114:1169-1179.
  • [16]Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation profile of human cancer. Cancer Res 2001, 61:3225-3229.
  • [17]Tahara T, Shibata T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, Yonemura J, Maeda Y, Maruyama N, Kamano T, Kamiya Y, Fujita H, Nakagawa Y, Nagasaka M, Iwata M, Hirata I, Arisawa T: Increased Number of CpG Island Hypermethylation in Tumor Suppressor Genes of Non-Neoplastic Gastric Mucosa Correlates with Higher Risk of Gastric Cancer. Digestion 2010, 82:27-36.
  • [18]Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB: Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 1994, 4:536-540.
  • [19]Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP: Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 1998, 23:5489-5494.
  • [20]Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA: Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 2001, 61:3573-3577.
  • [21]Bian YS, Osterheld MC, Fontolliet C, Bosman FT, Benhattar J: p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett's esophagus. Gastroenterology 2001, 122:1113-1121.
  • [22]Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M, Arii K, Kaneda A, Tsukamoto T, Tatematsu M, Tamura G, Saito D, Sugimura T, Ichinose M, Ushijima T: High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 2006, 12:989-995.
  • [23]Tahara T, Arisawa T, Sibata T, Wang FY, Nakamura M, Sakata M, Nagasaka M, Takagi T, Kamiya Y, Fujita H, Nakamura M, Hasegawa S, Iwata M, Takahama K, Watanabe M, Hirata I, Nakano H: Risk prediction of gastric cancer by analysis of aberrant DNA methylation in non-neoplastic gastric epithelium. Digestion 2007, 75:54-61.
  • [24]Kang GH, Lee HJ, Hwang KS, Lee S, Kim JH, Kim JS: Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am J Pathol 2003, 163:1551-1556.
  • [25]Kang GH, Lee S, Lim JS, Jung HY: Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest 2003, 83:635-641.
  • [26]Tahara T, Arisawa T, Shibata T, Nakamura M, Yoshioka D, Okubo M, Maruyama N, Kamano T, Kamiya Y, Fujita H, Nakagawa Y, Nagasaka M, Iwata M, Takahama K, Watanabe M, Yamashita H, Hirata I: Increased number of methylated CpG islands correlates with Helicobacter pylori infection, histological and serological severity of chronic gastritis. Eur J Gastroenterol Hepatol 2009, 21:613-619.
  • [27]Shibata T, Tahara T, Hirata I, Arisawa T: Genetic polymorphism of interleukin-17A and -17F genes in gastric carcinogenesis. Hum Immunol 2009, 70:547-551.
  • [28]Arisawa T, Tahara T, Shibata T, Nagasaka M, Nakamura M, Kamiya Y, Fujita H, Nakamura M, Yoshioka D, Arima Y, Okubo M, Hirata I, Nakano H: The influence of polymorphisms of interleukin-17A and interleukin-17F genes on the susceptibility to ulcerative colitis. J Clin Immunol 2008, 28:44-49.
  • [29]Nordang GBN, Viken MK, Hollis-Moffatt JE, Merriman TR, Forre OT, Helgetveit K, Kvien TK, Lie BA: Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology 2009, 48:367-370.
  • [30]Wu X, Zeng Z, Chen B, Yu J, Xue L, Hao Y, Chen M, Sung JJ, Hu P: Association between polymorphisms in interleukin-17A and interleukin-17F genes and risks of gastric cancer. Int J Cancer 2010, 127:86-92.
  • [31]Chen J, Deng Y, Zhao J, Luo Z, Peng W, Yang J, Ren L, Wang L, Fu Z, Yang X, Liu E: The polymorphism of IL-17 G-152A was associated with childhood asthma and bacterial colonization of the hypopharynx in bronchiolitis. J Clin Immunol 2010, 30:539-545.
  • [32]Katzenellenbogen RA, Baylin SB, Herman JG: Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 1999, 93:4347-4353.
  • [33]Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996, 93:9821-9826.
  • [34]Dixon MF, Genta RM, Yardley JH, Correa P: Classification and grading of gastritis: the updated Sydney system. Am J Surg Pathol 1996, 20:1161-1181.
  • [35]Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Rhyu MG: CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res 2001, 61:2847-2851.
  • [36]Pestov DG, Strezoska Z, Lau LF: Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001, 21:4246-4255.
  • [37]Tahara T, Shibata T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, Yonemura J, Maeda Y, Maruyama N, Kamano T, Kamiya Y, Fujita H, Nakagawa Y, Nagasaka M, Iwata M, Hirata I, Arisawa T: Effect of polymorphisms of IL-17A, -17F and MIF genes on CpG island hyper-methylation (CIHM) in the human gastric mucosa. Int J Mol Med 2009, 24:563-569.
  • [38]Tahara T, Shibata T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, Maruyama N, Kamano T, Kamiya Y, Fujita H, Nakagawa Y, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I, Arisawa T: MTHFR 677T carrier influences the methylation status of H. Pylori-infected gastric mucosa in older subject. Dig Dis Sci 2009, 54:2391-2398.
  • [39]Correa P: Human gastric carcinogenesis: a multistep and multifactorial process. First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 1992, 52:6735-6740.
  • [40]Kaise M, Yamasaki T, Yonezawa J, Miwa J, Ohta Y, Tajiri H: CpG island hypermethylation of tumor-suppressor genes in H. pylori - infected non-neoplastic gastric mucosa is linked with gastric cancer risk. Helicobacter 2008, 13:35-41.
  • [41]Nakajima T, Maekita T, Oda I, Gotoda T, Yamamoto S, Umemura S, Ichinose M, Sugimura T, Ushijima T, Saito D: Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol Biomarkers Prev 2006, 15:2317-2321.
  • [42]Pietrowski E, Bender B, Huppert J, White R, Luhmann HJ, Kuhlmann CRW: Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)Hoxidase derived reactive oxygen species. J Vasc Res 2011, 48:52-58.
  • [43]Weitzman SA, Turk PW, Milkowski D, Kozlowski K: Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci USA 1994, 91:1261-1264.
  • [44]Ouyang W, Kolls JK, Zheng Y: The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008, 28:454-467.
  文献评价指标  
  下载次数:9次 浏览次数:3次