期刊论文详细信息
BMC Genomics
Anthocyanin biosynthetic genes in Brassica rapa
Xiaowu Wang1  Jianli Liang1  Shuning Zheng1  Bo Liu1  Jian Wu1  Feng Cheng1  Ning Guo1 
[1] Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie No.12, Haidian district, Beijing 100081, P. R. China
关键词: Cruciferae;    Brassica rapa;    Whole genome duplication;    Anthocyanin biosynthetic genes;    Comparative genomics;   
Others  :  1216725
DOI  :  10.1186/1471-2164-15-426
 received in 2013-12-20, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level.

Results

In total, we identified 73 genes in B. rapa as orthologs of 41 anthocyanin biosynthetic genes in A. thaliana. In B. rapa, the anthocyanin biosynthetic genes (ABGs) have expanded and most genes exist in more than one copy. The anthocyanin biosynthetic structural genes have expanded through whole genome and tandem duplication in B. rapa. More structural genes located upstream of the anthocyanin biosynthetic pathway have been retained than downstream. More negative regulatory genes are retained in the anthocyanin biosynthesis regulatory system of B. rapa.

Conclusions

These results will promote an understanding of the genetic mechanism of anthocyanin biosynthesis, as well as help the improvement of the nutritional quality of B. rapa through the breeding of high anthocyanin content varieties.

【 授权许可】

   
2014 Guo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150702035924367.pdf 850KB PDF download
Figure 5. 54KB Image download
Figure 4. 37KB Image download
Figure 3. 46KB Image download
Figure 2. 57KB Image download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Harborne JB, Baxter H, Moss GP: Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants. 2nd edition. London: Boca Raton: CRC Press, Taylor & Francis; 1999.
  • [2]Andersen OM, Markham KR: Flavonoids: Chemistry, Biochemistry and Applications. London: Boca Raton: CRC Press, Taylor & Francis; 2006.
  • [3]Bradshaw H, Schemske DW: Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 2003, 426(6963):176-178.
  • [4]Yamasaki H, Sakihama Y, Ikehara N: Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 1997, 115(4):1405-1412.
  • [5]Steyn W, Wand S, Holcroft D, Jacobs G: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 2002, 155(3):349-361.
  • [6]Holton TA, Cornish EC: Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 1995, 7(7):1071.
  • [7]Broun P: Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 2005, 8(3):272-279.
  • [8]Winkel-Shirley B: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 2001, 126(2):485-493.
  • [9]Lepiniec L, Debeaujon I, Routaboul J-M, Baudry A, Pourcel L, Nesi N, Caboche M: Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 2006, 57:405-430.
  • [10]Fahey JW, Talalay P, Gustine DI, Flores HE: The role of crucifers in cancer chemoprotection. In Phytochemicals and Health. Rochville: American Society of Plant Physiologist; 1995:87-93.
  • [11]Rochfort SJ, Imsic M, Jones R, Trenerry VC, Tomkins B: Characterization of flavonol conjugates in immature leaves of pak choi [Brassica rapa L. ssp. chinensis L. (Hanelt.)] by HPLC-DAD and LC-MS/MS. J Agric Food Chem 2006, 54(13):4855-4860.
  • [12]Podsędek A: Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Science and Technology 2007, 40(1):1-11.
  • [13]Kim C, Park S, Kikuchi S, Kwon S, Park S, Yoon U, Park D, Seol Y, Hahn J, Park S: Genetic analysis of gene expression for pigmentation in Chinese cabbage (Brassica rapa). BioChip Journal 2010, 4(2):123-128.
  • [14]Burdzinski C, Wendell DL: Mapping the anthocyaninless (anl) locus in rapid-cycling Brassica rapa (RBr) to linkage group R9. BMC Genet 2007, 8(1):64. BioMed Central Full Text
  • [15]Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F: The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 2011, 43(10):1035-1039.
  • [16]Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X: Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One 2012, 7(5):e36442.
  • [17]Freeling M, Thomas BC: Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 2006, 16(7):805-814.
  • [18]Rizzon C, Ponger L, Gaut BS: Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2006, 2(9):e115.
  • [19]Sémon M, Wolfe KH: Consequences of genome duplication. Current opinion in genetics & development 2007, 17(6):505-512.
  • [20]Petroni K, Tonelli C: Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 2011, 181(3):219-229.
  • [21]Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BS: Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol 2008, 147(3):1046-1061.
  • [22]Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM: Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 2003, 131(3):259-268.
  • [23]Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N: Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol J 2007, 2(10):1214-1234.
  • [24]Shirley BW, Hanley S, Goodman HM: Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. The Plant Cell Online 1992, 4(3):333-347.
  • [25]Pelletier M, Murrell J, Shirley B: Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Further evidence for differential regulation of "early" and "late" genes. Plant Physiol 1997, 113(4):1437-1445.
  • [26]Koes R, Verweij W, Quattrocchio F: Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 2005, 10(5):236-242.
  • [27]Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C: Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell Online 2000, 12(12):2383-2393.
  • [28]Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A: A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 2003, 130(20):4859-4869.
  • [29]Tohge T, Nishiyama Y, Hirai M, Yano M, Nakajima J-i, Awazuhara M, Inoue E, Takahashi H, Goodenowe D, Kitayama M, Noji M, Yamazaki M, Saito K: Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. The Plant journal 2005, 42(2):218-235.
  • [30]Gonzalez A, Zhao M, Leavitt JM, Lloyd AM: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 2008, 53(5):814-827.
  • [31]Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B: Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 2007, 50(4):660-677.
  • [32]Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B: Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12-and MYB111- independent flavonol glycoside accumulation. New Phytol 2010, 188(4):985-1000.
  • [33]Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L: MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. The Plant Journal 2008, 55(6):940-953.
  • [34]Matsui K, Umemura Y, Ohme‒Takagi M: AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal 2008, 55(6):954-967.
  • [35]Zhu H-F, Fitzsimmons K, Khandelwal A, Kranz RG: CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Mol Plant 2009, 2(4):790-802.
  • [36]Rubin G, Tohge T, Matsuda F, Saito K, Scheible W-R: Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. The Plant Cell Online 2009, 21(11):3567-3584.
  • [37]Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B: Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 2005, 57(2):155-171.
  • [38]Fang L, Cheng F, Wu J, Wang X: The impact of genome triplication on tandem gene evolution in Brassica rapa. Frontiers in plant science 2012., 3
  • [39]Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC: The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell Online 1999, 11(7):1337-1349.
  • [40]Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW: The TTG1 Gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol 1994, 166(2):740-754.
  • [41]Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X: BRAD, the genetics and genomics database for Brassica plants. BMC plant biology 2011, 11:136. BioMed Central Full Text
  • [42]Cheng F, Wu J, Fang L, Wang X: Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Frontiers in plant science 2012., 3
  • [43]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
  文献评价指标  
  下载次数:36次 浏览次数:28次