BMC Systems Biology | |
From networks of protein interactions to networks of functional dependencies | |
Gianfranco Bazzoni2  Davide Luciani1  | |
[1] Unit of Clinical Knowledge Engineering, Mario Negri Institute of Pharmacological Research, Milan, I-20156, Italy;Laboratory of Systems Biology, Mario Negri Institute of Pharmacological Research, Milan, I-20156, Italy | |
关键词: Saccharomyces cerevisiae; Polarized growth; Cell budding; Peroxisomes; Markov representations; Biological functions; Protein interaction networks; | |
Others : 1144476 DOI : 10.1186/1752-0509-6-44 |
|
received in 2011-10-20, accepted in 2012-05-20, 发布年份 2012 | |
【 摘 要 】
Background
As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation). However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node.
Results
Reasoning that topological features (e.g., clusters of highly inter-connected proteins) might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations), based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud) or biological processes (e.g., cell budding) of the model organism S. cerevisiae.
Conclusions
The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.
【 授权许可】
2012 Luciani and Bazzoni; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150330154250351.pdf | 2566KB | download | |
Figure 5 . | 104KB | Image | download |
Figure 4 . | 73KB | Image | download |
Figure 3 . | 74KB | Image | download |
Figure 2 . | 72KB | Image | download |
Figure 1 . | 67KB | Image | download |
【 图 表 】
Figure 1 .
Figure 2 .
Figure 3 .
Figure 4 .
Figure 5 .
【 参考文献 】
- [1]Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5:101-113.
- [2]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
- [3]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
- [4]Schwikowski B, Uetz P, Fields S: A network of protein-protein interactions in yeast. Nat Biotechnol 2000, 18:1257-1261.
- [5]Dotan-Cohen D, Letovsky S, Melkman AA, Kasif S: Biological process linkage networks. PLoS One 2009, 4:e5313.
- [6]Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, et al.: High-quality binary protein interaction map of the yeast interactome network. Science 2008, 322:104-110.
- [7]Cox DR, Wermuth N: Causality: a statistical view. International Statistical Review 2004, 72:285-305.
- [8]Pearl J: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco: Morgan Kaufmann; 1988.
- [9]Spirtes P, Glymour CN, Scheines R: Causation, prediction, and search. New York: Springer-Verlag; 1993.
- [10]Palla G, Derenyi I, Farkas I, Vicsek T: Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435:814-818.
- [11]Whittaker J: Graphical Models in Applied Multivariate Statistics. Chichester: John Wiley & Sons; 1990.
- [12]Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402:C47-C52.
- [13]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297:1551-1555.
- [14]Spirin V, Mirny LA: Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 2003, 100:12123-12128.
- [15]Dean T, Kanazawa K: A model for reasoning about persistence and causation. Computational Intelligence 1989, 5:142-150.
- [16]Tritchler D: Reasoning about data with directed graphs. Stat Med 1999, 18:2067-2076.
- [17]Hettema EH, Girzalsky W, van Den Berg M, Erdmann R, Distel B: Saccharomyces cerevisiae pex3p and pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J 2000, 19:223-233.
- [18]Lockshon D, Surface LE, Kerr EO, Kaeberlein M, Kennedy BK: The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 2007, 175:77-91.
- [19]Elgersma Y, Kwast L, van den Berg M, Snyder WB, Distel B, Subramani S, Tabak HF: Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S.cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J 1997, 16:7326-7341.
- [20]Motley AM, Hettema EH: Yeast peroxisomes multiply by growth and division. J Cell Biol 2007, 178:399-410.
- [21]Pruyne D, Bretscher A: Polarization of cell growth in yeast. J Cell Sci 2000, 113(Pt 4):571-585.
- [22]Pruyne D, Bretscher A: Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 2000, 113(Pt 3):365-375.
- [23]Paris L, Bazzoni G: The polarity sub-network in the yeast network of protein-protein interactions. Network Biology 2011, 1:134-138.
- [24]Lubovac Z, Gamalielsson J, Olsson B: Combining functional and topological properties to identify core modules in protein interaction networks. Proteins 2006, 64:948-959.
- [25]Thoms S, Gronborg S, Gartner J: Organelle interplay in peroxisomal disorders. Trends Mol Med 2009, 15:293-302.
- [26]Ma C, Agrawal G, Subramani S: Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol 2011, 193:7-16.
- [27]Knoblach B, Rachubinski RA: Phosphorylation-dependent activation of peroxisome proliferator protein PEX11 controls peroxisome abundance. J Biol Chem 2010, 285:6670-6680.
- [28]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
- [29]Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 1999, 96:2896-2901.
- [30]Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 1999, 96:4285-4288.
- [31]Niehrs C, Pollet N: Synexpression groups in eukaryotes. Nature 1999, 402:483-487.
- [32]Letovsky S, Kasif S: Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 2003, 19(Suppl 1):i197-i204.
- [33]Vazquez A, Flammini A, Maritan A, Vespignani A: Global protein function prediction from protein-protein interaction networks. Nat Biotechnol 2003, 21:697-700.
- [34]Chua HN, Sung WK, Wong L: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 2006, 22:1623-1630.
- [35]Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S: Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci U S A 2004, 101:2888-2893.
- [36]Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D: A combined algorithm for genome-wide prediction of protein function. Nature 1999, 402:83-86.
- [37]Issel-Tarver L, Christie KR, Dolinski K, Andrada R, Balakrishnan R, Ball CA, Binkley G, Dong S, Dwight SS, Fisk DG, et al.: Saccharomyces Genome Database. Methods Enzymol 2002, 350:329-346.
- [38]Dammai V, Subramani S: The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 2001, 105:187-196.
- [39]Nair DM, Purdue PE, Lazarow PB: Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae. J Cell Biol 2004, 167:599-604.
- [40]Van der Leij I, Van den Berg M, Boot R, Franse M, Distel B, Tabak HF: Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol 1992, 119:153-162.
- [41]Erdmann R, Blobel G: Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol 1996, 135:111-121.
- [42]Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B: Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol Biol Cell 2000, 11:3963-3976.
- [43]Agne B, Meindl NM, Niederhoff K, Einwachter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH: Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 2003, 11:635-646.
- [44]Purdue PE, Lazarow PB: Peroxisome biogenesis. Annu Rev Cell Dev Biol 2001, 17:701-752.
- [45]Stelter P, Kunze R, Flemming D, Hopfner D, Diepholz M, Philippsen P, Bottcher B, Hurt E: Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nat Cell Biol 2007, 9:788-796.
- [46]Erdmann R, Blobel G: Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Cell Biol 1995, 128:509-523.
- [47]Opalinski L, Kiel JA, Williams C, Veenhuis M, van der Klei IJ: Membrane curvature during peroxisome fission requires Pex11. EMBO J 2011, 30:5-16.
- [48]Fagarasanu A, Mast FD, Knoblach B, Rachubinski RA: Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast. Nat Rev Mol Cell Biol 2010, 11:644-654.
- [49]Fagarasanu M, Fagarasanu A, Tam YY, Aitchison JD, Rachubinski RA: Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae. J Cell Biol 2005, 169:765-775.
- [50]Munck JM, Motley AM, Nuttall JM, Hettema EH: A dual function for Pex3p in peroxisome formation and inheritance. J Cell Biol 2009, 187:463-471.
- [51]Chang J, Mast FD, Fagarasanu A, Rachubinski DA, Eitzen GA, Dacks JB, Rachubinski RA: Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. J Cell Biol 2009, 187:233-246.
- [52]Fagarasanu A, Fagarasanu M, Eitzen GA, Aitchison JD, Rachubinski RA: The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae. Dev Cell 2006, 10:587-600.
- [53]Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W, Shaw JM: The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 1998, 143:333-349.
- [54]Hofmann L, Saunier R, Cossard R, Esposito M, Rinaldi T, Delahodde A: A nonproteolytic proteasome activity controls organelle fission in yeast. J Cell Sci 2009, 122:3673-3683.
- [55]Li X, Gould SJ: The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 2003, 278:17012-17020.
- [56]Motley AM, Ward GP, Hettema EH: Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J Cell Sci 2008, 121:1633-1640.
- [57]Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nystrom T, Osiewacz HD: Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 2007, 9:99-105.
- [58]Vizeacoumar FJ, Vreden WN, Fagarasanu M, Eitzen GA, Aitchison JD, Rachubinski RA: The dynamin-like protein Vps1p of the yeast Saccharomyces cerevisiae associates with peroxisomes in a Pex19p-dependent manner. J Biol Chem 2006, 281:12817-12823.
- [59]Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW: An in vivo map of the yeast protein interactome. Science 2008, 320:1465-1470.
- [60]Marelli M, Smith JJ, Jung S, Yi E, Nesvizhskii AI, Christmas RH, Saleem RA, Tam YY, Fagarasanu A, Goodlett DR, et al.: Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J Cell Biol 2004, 167:1099-1112.
- [61]Saraya R, Krikken AM, Veenhuis M, van der Klei IJ: Peroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1. J Cell Biol 2011, 193:885-900.
- [62]Yu X, Cai M: The yeast dynamin-related GTPase Vps1p functions in the organization of the actin cytoskeleton via interaction with Sla1p. J Cell Sci 2004, 117:3839-3853.
- [63]French ME, Kretzmann BR, Hicke L: Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. J Biol Chem 2009, 284:12071-12079.
- [64]Kim Y, Deng Y, Philpott CC: GGA2- and ubiquitin-dependent trafficking of Arn1, the ferrichrome transporter of Saccharomyces cerevisiae. Mol Biol Cell 2007, 18:1790-1802.
- [65]Stamenova SD, Dunn R, Adler AS, Hicke L: The Rsp5 ubiquitin ligase binds to and ubiquitinates members of the yeast CIN85-endophilin complex, Sla1-Rvs167. J Biol Chem 2004, 279:16017-16025.
- [66]Gourlay CW, Ayscough KR: Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci 2005, 118:2119-2132.
- [67]Youn JY, Friesen H, Kishimoto T, Henne WM, Kurat CF, Ye W, Ceccarelli DF, Sicheri F, Kohlwein SD, McMahon HT, Andrews BJ: Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis. Mol Biol Cell 2010, 21:3054-3069.
- [68]Smaczynska-de R, Allwood EG, Aghamohammadzadeh S, Hettema EH, Goldberg MW, Ayscough KR: A role for the dynamin-like protein Vps1 during endocytosis in yeast. J Cell Sci 2010, 123:3496-3506.
- [69]Saleem RA, Long-O'Donnell R, Dilworth DJ, Armstrong AM, Jamakhandi AP, Wan Y, Knijnenburg TA, Niemisto A, Boyle J, Rachubinski RA, et al.: Genome-wide analysis of effectors of peroxisome biogenesis. PLoS One 2010, 5:e11953.
- [70]van Roermund CW, Tabak HF, van Den Berg M, Wanders RJ, Hettema EH: Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J Cell Biol 2000, 150:489-498.
- [71]Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B: Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 1998, 18:3289-3299.
- [72]Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL: The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A 2008, 105:9880-9885.
- [73]Thoms S, Erdmann R: Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J 2005, 272:5169-5181.
- [74]Titorenko VI, Mullen RT: Peroxisome biogenesis: the peroxisomal endomembrane system and the role of the ER. J Cell Biol 2006, 174:11-17.
- [75]van der Zand A, Braakman I, Tabak HF: Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol Biol Cell 2010, 21:2057-2065.
- [76]Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra TD, Thorner J, Lee KS: Coupling morphogenesis to mitotic entry. Proc Natl Acad Sci U S A 2004, 101:4124-4129.
- [77]Sopko R, Huang D, Smith JC, Figeys D, Andrews BJ: Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. EMBO J 2007, 26:4487-4500.
- [78]Hanrahan J, Snyder M: Cytoskeletal activation of a checkpoint kinase. Mol Cell 2003, 12:663-673.
- [79]Andrews PD, Stark MJ: Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. J Cell Sci 2000, 113(Pt 3):507-520.
- [80]Ohya Y, Botstein D: Diverse essential functions revealed by complementing yeast calmodulin mutants. Science 1994, 263:963-966.
- [81]Wagner W, Bielli P, Wacha S, Ragnini-Wilson A: Mlc1p promotes septum closure during cytokinesis via the IQ motifs of the vesicle motor Myo2p. EMBO J 2002, 21:6397-6408.
- [82]Lillie SH, Brown SS: Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J Cell Biol 1994, 125:825-842.
- [83]Pruyne DW, Schott DH, Bretscher A: Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 1998, 143:1931-1945.
- [84]van Drogen F, Peter M: Spa2p functions as a scaffold-like protein to recruit the Mpk1p MAP kinase module to sites of polarized growth. Curr Biol 2002, 12:1698-1703.
- [85]Maekawa H, Usui T, Knop M, Schiebel E: Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO J 2003, 22:438-449.
- [86]Song S, Grenfell TZ, Garfield S, Erikson RL, Lee KS: Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol Cell Biol 2000, 20:286-298.
- [87]Alvaro D, Lisby M, Rothstein R: Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet 2007, 3:e228.
- [88]Wu H, Turner C, Gardner J, Temple B, Brennwald P: The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol Biol Cell 2010, 21:430-442.
- [89]Goud B, Salminen A, Walworth NC, Novick PJ: A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 1988, 53:753-768.
- [90]Li R: Bee1, a yeast protein with homology to Wiscott-Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J Cell Biol 1997, 136:649-658.
- [91]Goodson HV, Anderson BL, Warrick HM, Pon LA, Spudich JA: Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 1996, 133:1277-1291.
- [92]Tang HY, Munn A, Cai M: EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in Saccharomyces cerevisiae. Mol Cell Biol 1997, 17:4294-4304.
- [93]Brockerhoff SE, Davis TN: Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. J Cell Biol 1992, 118:619-629.
- [94]Peters C, Andrews PD, Stark MJ, Cesaro-Tadic S, Glatz A, Podtelejnikov A, Mann M, Mayer A: Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science 1999, 285:1084-1087.