期刊论文详细信息
BMC Research Notes
Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps
Manju Bansal1  Dhananjay Bhattacharyya2  Senthilkumar Kailasam1 
[1] Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India;Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India
关键词: Basepairs;    Watson-Crick;    RNA-Protein;    Hydrogen bond;    Dinucleotide;    RNA;   
Others  :  1134500
DOI  :  10.1186/1756-0500-7-83
 received in 2013-12-17, accepted in 2014-01-31,  发布年份 2014
PDF
【 摘 要 】

Background

Sequence determines the three-dimensional structure of RNAs, and thereby plays an important role in carrying out various biological functions. RNA duplexes containing Watson-Crick (WC) basepairs, interspersed with non-Watson-Crick basepairs, are the dominant structural unit and form the scaffold for the 3-dimensional structure of RNA. It is therefore crucial to understand the geometric variation in the dinucleotide steps that form the helices. We have carried out a detailed analysis of the dinucleotide steps formed by AU and GC Watson-Crick basepairs in RNA structures (both free and protein bound) and compared the results to that seen in DNA. Further, the effect of protein binding on these steps was examined by comparing steps in free RNA structures with protein bound RNA structures.

Results

Characteristic sequence dependent geometries are observed for the RR, RY and YR type of dinucleotide steps in RNA. Their geometric parameters show correlated variations that are different from those observed in B-DNA helices. Subtle, but statistically significant differences are seen in roll, slide and average propeller-twist values, between the dinucleotide steps of free RNA and protein bound RNA structures. Many non-canonical cross-strand and intra-strand hydrogen bonds were identified that can stabilise the RNA dinucleotide steps, among which YR steps show presence of many new unreported interactions.

Conclusions

Our work provides for the first time a detailed analysis of the conformational preferences exhibited by Watson-Crick basepair containing steps in RNA double helices. Overall, the WC dinucleotide steps show considerable conformational variability. Furthermore, we have identified hydrogen bond interactions in several of the dinucleotide steps that could play a role in determining the preferred geometry, in addition to the intra-basepair hydrogen bonds and stacking interactions. Protein binding affects the conformation of the steps that are in direct contact, as well as allosterically affect the steps that are not in direct physical contact.

【 授权许可】

   
2014 Kailasam et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150305235741829.pdf 3055KB PDF download
Figure 7. 100KB Image download
Figure 6. 72KB Image download
Figure 5. 93KB Image download
Figure 4. 28KB Image download
Figure 3. 231KB Image download
Figure 2. 147KB Image download
Figure 1. 138KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Calladine C, Drew H, Luisi B, Travers A: Understanding DNA, Third Edition: The Molecule and How it Works. Academic Press; 2004.
  • [2]Bhattacharyya D, Bansal M: Local variability and base sequence effects in DNA crystal structures. J Biomol Struct Dyn 1990, 8(3):539-572.
  • [3]Gorin AA, Zhurkin VB, Olson WK: B-DNA twisting correlates with base-pair morphology. J Mol Biol 1995, 247(1):34-48.
  • [4]Marathe A, Karandur D, Bansal M: Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. BMC Struct Biol 2009, 9:24. BioMed Central Full Text
  • [5]Packer MJ, Hunter CA: Sequence-dependent DNA structure: the role of the sugar-phosphate backbone. J Mol Biol 1998, 280(3):407-420.
  • [6]Suzuki M, Amano N, Kakinuma J, Tateno M: Use of a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. J Mol Biol 1997, 274(3):421-435.
  • [7]Esguerra M, Olson WK: RNASTEPS, An Online Database of Sequence-dependent Deformability of RNA Helical Regions. Albany: Adenine Press; 2011. [Albany 2011, Conversation 17: 2011]
  • [8]Das J, Mukherjee S, Mitra A, Bhattacharyya D: Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Biomol Struct Dyn 2006, 24(2):149-161.
  • [9]Nagaswamy U, Larios-Sanz M, Hury J, Collins S, Zhang Z, Zhao Q, Fox GE: NCIR: a database of non-canonical interactions in known RNA structures. Nucleic Acids Res 2002, 30(1):395-397.
  • [10]Nagaswamy U, Voss N, Zhang Z, Fox GE: Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res 2000, 28(1):375-376.
  • [11]Xin Y, Olson WK: BPS: a database of RNA base-pair structures. Nucleic Acids Res 2009, 37(Database issue):D83-88.
  • [12]Williamson JR: Induced fit in RNA-protein recognition. Nat Struct Biol 2000, 7(10):834-837.
  • [13]Ellis JJ, Jones S: Evaluating conformational changes in protein structures binding RNA. Proteins 2008, 70(4):1518-1526.
  • [14]Jones S, Daley DT, Luscombe NM, Berman HM, Thornton JM: Protein-RNA interactions: a structural analysis. Nucleic Acids Res 2001, 29(4):943-954.
  • [15]Morozova N, Allers J, Myers J, Shamoo Y: Protein-RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures. Bioinformatics 2006, 22(22):2746-2752.
  • [16]Ellis JJ, Broom M, Jones S: Protein-RNA interactions: structural analysis and functional classes. Proteins 2007, 66(4):903-911.
  • [17]Lu XJ, Shakked Z, Olson WK: A-form conformational motifs in ligand-bound DNA structures. J Mol Biol 2000, 300(4):819-840.
  • [18]Marathe A, Bansal M: An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression. BMC Struct Biol 2011, 11:1. BioMed Central Full Text
  • [19]Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB: DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci U S A 1998, 95(19):11163-11168.
  • [20]Stefl R, Skrisovska L, Allain FH: RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 2005, 6(1):33-38.
  • [21]Draper DE: Themes in RNA-protein recognition. J Mol Biol 1999, 293(2):255-270.
  • [22]Xia T, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH: Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with watson - crick base pairs. Biochemistry 1998, 37(42):14719-14735.
  • [23]Turner DH, Sugimoto N, Freier SM: RNA structure prediction. Annu Rev Biophys Biophys Chem 1988, 17:167-192.
  • [24]Turner DH, Bevilacqua PC: Thermodynamic Considerations for Evolution by RNA. In The RNA World. Edited by Atkins JF, Gesteland RF. New York: Cold Spring Harbor Press; 1993:447-464.
  • [25]Lu XJ, Olson WK, Bussemaker HJ: The RNA backbone plays a crucial role in mediating the intrinsic stability of the GpU dinucleotide platform and the GpUpA/GpA miniduplex. Nucleic Acids Res 2010, 38(14):4868-4876.
  • [26]Zgarbová M, Jurečka P, Banáš P, Otyepka M, Šponer JE, Leontis NB, Zirbel CL, Šponer J: Noncanonical hydrogen bonding in nucleic acids. Benchmark evaluation of Key base–phosphate interactions in folded RNA molecules using quantum-chemical calculations and molecular dynamics simulations. J Phys Chem 2011, 115(41):11277-11292.
  • [27]Zirbel CL, Šponer JE, Šponer J, Stombaugh J, Leontis NB: Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res 2009, 37(15):4898-4918.
  • [28]Desiraju GR, Steiner T: The Weak Hydrogen Bond: In Structural Chemistry and Biology (International Union of Crystallography Monographs on Crystallography). USA: Oxford University Press; 2001.
  • [29]Weiss MS, Brandl M, Suhnel J, Pal D, Hilgenfeld R: More hydrogen bonds for the (structural) biologist. Trends Biochem Sci 2001, 26(9):521-523.
  • [30]Ghosh A, Bansal M: C-H.O hydrogen bonds in minor groove of A-tracts in DNA double helices. J Mol Biol 1999, 294(5):1149-1158.
  • [31]Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB: A role for CH…O interactions in protein-DNA recognition. J Mol Biol 1998, 277(5):1129-1140.
  • [32]Panigrahi SK, Desiraju GR: Strong and weak hydrogen bonds in the protein-ligand interface. Proteins 2007, 67(1):128-141.
  • [33]Singh SK, Babu MM, Balaram P: Registering alpha-helices and beta-strands using backbone C-H…O interactions. Proteins 2003, 51(2):167-171.
  • [34]Nelson HC, Finch JT, Luisi BF, Klug A: The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature 1987, 330(6145):221-226.
  • [35]Shatzky-Schwartz M, Arbuckle ND, Eisenstein M, Rabinovich D, Bareket-Samish A, Haran TE, Luisi BF, Shakked Z: X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature. J Mol Biol 1997, 267(3):595-623.
  • [36]Besseova I, Banas P, Kuhrova P, Kosinova P, Otyepka M, Sponer J: Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration. J Phys Chem B 2012, 116(33):9899-9916.
  • [37]Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The protein data bank. Nucleic Acids Res 2000, 28(1):235-242.
  • [38]Ray SS, Halder S, Kaypee S, Bhattacharyya D: HD-RNAS: An automated hierarchical database of RNA structures. Genetics: Frontiers in; 2012:3.
  • [39]Leontis N, Zirbel C: Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking. In RNA 3D Structure Analysis and Prediction, Volume 27. Edited by Leontis N, Westhof E. Springer Berlin Heidelberg; 2012:281.
  • [40]Bansal M, Bhattacharyya D, Ravi B: NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. Comput Appl Biosci 1995, 11(3):281-287.
  • [41]Arnott S: Polynucleotide secondary structures: an historical perspective. In Oxford Handbook of Nucleic Acid Structure. Edited by Neidle S. Oxford Press; 1999:1-38.
  • [42]Lu XJ, Olson WK: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 2003, 31(17):5108-5121.
  • [43]Leontis NB, Westhof E: Geometric nomenclature and classification of RNA base pairs. RNA 2001, 7(4):499-512.
  • [44]Bhattacharyya D, Bansal M: A self-consistent formulation for analysis and generation of non-uniform DNA structures. J Biomol Struct Dyn 1989, 6(4):635-653.
  • [45]El Hassan M, Calladine CR: Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Philos Trans Royal Soc A 1997, 355(1722):43-100.
  • [46]Word JM, Lovell SC, Richardson JS, Richardson DC: Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 1999, 285(4):1735-1747.
  • [47]Collaborative Computational Project N: The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 1994, 50:760-763.
  • [48]MATLAB: Version R2010b. Natick, Massachusetts: The MathWorks Inc; 2010.
  • [49]Svozil D, Kalina J, Omelka M, Schneider B: DNA conformations and their sequence preferences. Nucleic Acids Res 2008, 36(11):3690-3706.
  • [50]Šponer J, Kypr J: Close mutual contacts of the amino groups in DNA. Int J Biol Macromol 1994, 16(1):3-6.
  • [51]Sponer J, Hobza P: Bifurcated hydrogen bonds in DNA crystal structures. An ab initio quantum chemical study. J Am Chem Soc 1994, 116(2):709-714.
  • [52]Brooks BR CLB III, Jr ADM, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, et al.: CHARMM: the biomolecular simulation program. J Comput Chem 2009, 30(10):1545-1614.
  • [53]Case D, Cheatham T, Darden T, Gohlke H, Luo R, Merz K, Onufriev A, Simmerling C, Wang B, Woods R: The Amber biomolecular simulation programs. J Comput Chem 2005, 26(16):1668-1688.
  • [54]Williams DE: Net Atomic Charge and Multipole Models for the ab Initio Molecular Electric Potential. In Reviews in Computational Chemistry. John Wiley & Sons, Inc; 2007:219-271.
  • [55]Carpenter JE, Weinhold F: Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure. J Mol Struct: THEOCHEM 1988, 169:41-62.
  • [56]Sponer J, Leszczynski J, Hobza P: Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 2001, 61(1):3-31.
  • [57]Sponer J, Hobza P: Nonplanar geometries of DNA bases. Ab initio second-order Moeller-Plesset study. J Phys Chem 1994, 98(12):3161-3164.
  • [58]Mukherjee S, Majumdar S, Bhattacharyya D: Role of hydrogen bonds in protein-DNA recognition: effect of nonplanar amino groups. J Phys Chem B 2005, 109(20):10484-10492.
  • [59]Bandyopadhyay D, Bhattacharyya D: Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies. Biopolymers 2006, 83(3):313-325.
  文献评价指标  
  下载次数:142次 浏览次数:82次