期刊论文详细信息
BMC Genomics
Systematic transcriptome analysis of the zebrafish model of diamond-blackfan anemia induced by RPS24 deficiency
Haibo Jia1  Weiping Yuan3  Xiangdong Fang4  Tao Cheng3  Anskar Yu-Hung Leung2  Xiaofan Zhu3  Xiaomin Wang3  Qiong Jia1  Yang Wan3  Zhaojun Zhang4  Qian Zhang4  Binfeng Song1 
[1] Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China;Department of Medicine, University of Hong Kong, QMH 418, Hong Kong, China;State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China;CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
关键词: RPS24;    RNA-seq;    miRNA-seq;    hematopoiesis;    DBA;   
Others  :  1140920
DOI  :  10.1186/1471-2164-15-759
 received in 2014-03-27, accepted in 2014-08-29,  发布年份 2014
PDF
【 摘 要 】

Background

Diamond–Blackfan anemia (DBA) is a class of human diseases linked to defective ribosome biogenesis that results in clinical phenotypes. Genetic mutations in ribosome protein (RP) genes lead to DBA phenotypes, including hematopoietic defects and physical deformities. However, little is known about the global regulatory network as well as key miRNAs and gene pathways in the zebrafish model of DBA.

Results

In this study, we establish the DBA model in zebrafish using an RPS24 morpholino and found that RPS24 is required for both primitive hematopoiesis and definitive hematopoiesis processes that are partially mediated by the p53 pathway. Several deregulated genes and miRNAs were found to be related to hematopoiesis, vascular development and apoptosis in RPS24-deficient zebrafish via RNA-seq and miRNA-seq data analysis, and a comprehensive regulatory network was first constructed to identify the mechanisms of key miRNAs and gene pathways in the model. Interestingly, we found that the central node genes in the network were almost all targeted by significantly deregulated miRNAs. Furthermore, the enforced expression of miR-142-3p, a uniquely expressed miRNA, causes a significant decrease in primitive erythrocyte progenitor cells and HSCs.

Conclusions

The present analyses demonstrate that the comprehensive regulatory network we constructed is useful for the functional prediction of new and important miRNAs in DBA and will provide insights into the pathogenesis of mutant rps24-mediated human DBA disease.

【 授权许可】

   
2014 Song et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325152852700.pdf 2529KB PDF download
Figure 7. 105KB Image download
Figure 6. 74KB Image download
Figure 5. 77KB Image download
Figure 4. 56KB Image download
Figure 3. 26KB Image download
Figure 2. 115KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Gazda HT, Sieff CA: Recent insights into the pathogenesis of Diamond-Blackfan anaemia. Br J Haematol 2006, 135(2):149-157.
  • [2]Horos R, von Lindern M: Molecular mechanisms of pathology and treatment in Diamond Blackfan Anaemia. Br J Haematol 2012, 159(5):514-527.
  • [3]Sieff CA, Yang J, Merida-Long LB, Lodish HF: Pathogenesis of the erythroid failure in Diamond Blackfan anaemia. Br J Haematol 2010, 148(4):611-622.
  • [4]Duan J, Ba Q, Wang Z, Hao M, Li X, Hu P, Zhang D, Zhang R, Wang H: Knockdown of ribosomal protein S7 causes developmental abnormalities via p53 dependent and independent pathways in zebrafish. Int J Biochem Cell Biol 2011, 43(8):1218-1227.
  • [5]Gazda HT, Grabowska A, Merida-Long LB, Latawiec E, Schneider HE, Lipton JM, Vlachos A, Atsidaftos E, Ball SE, Orfali KA, Niewiadomska E, Da Costa L, Gil T, Niemeyer C, Meerpohl JJ, Stahl J, Schratt G, Glader B, Backer K, Wong C, Nathan DG, Beggs AH, Sieff CA: Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet 2006, 79(6):1110-1118.
  • [6]Cmejla R, Cmejlova J, Handrkova H, Petrak J, Pospisilova D: Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat 2007, 28(12):1178-1182.
  • [7]Konno Y, Toki T, Tandai S, Xu G, Wang R, Terui K, Ohga S, Hara T, Hama A, Kojima S, Hasegawa D, Kosaka Y, Yanagisawa R, Koike K, Kanai R, Imai T, Hongo T, Park M-J, Sugita K, Ito E: Mutations in the ribosomal protein genes in Japanese patients with Diamond-Blackfan anemia. Haematologica 2010, 95(8):1293-1299.
  • [8]Landowski M, O’Donohue MF, Buros C, Ghazvinian R, Montel-Lehry N, Vlachos A, Sieff CA, Newburger PE, Niewiadomska E, Matysiak M, Glader B, Atsidaftos E, Lipton JM, Beggs AH, Gleizes P, Gazda HT: Novel deletion of RPL15 identified by array-comparative genomic hybridization in Diamond-Blackfan anemia. Hum Genet 2013, 132(11):1265-1274.
  • [9]Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Zaucha JM, Glader B, Niemeyer C, Meerpohl JJ, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH: Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 2008, 83(6):769-780.
  • [10]Farrar JE, Nater M, Caywood E, McDevitt MA, Kowalski J, Takemoto CM, Talbot CC Jr, Meltzer P, Esposito D, Beggs AH, Schneider HE, Grabowska A, Ball SE, Niewiadomska E, Sieff CA, Vlachos A, Atsidaftos E, Ellis SR, Lipton JM, Gazda HT, Arceci RJ: Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood 2008, 112(5):1582-1592.
  • [11]Moniz H, Gastou M, Leblanc T, Hurtaud C, Cretien A, Lecluse Y, Raslova H, Larghero J, Croisille L, Faubladier M, Bluteau O, Lordier L, Tchernia G, Vainchenker W, Mohandas N, Da Costa L, DBA Group of Société d’Hématologie et d’Immunologie Pédiatrique-SHIP: Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death Dis 2012, 3:e356.
  • [12]Badhai J, Frojmark AS, J Davey E, Schuster J, Dahl N: Ribosomal protein S19 and S24 insufficiency cause distinct cell cycle defects in Diamond-Blackfan anemia. Biochim Biophys Acta 2009, 1792(10):1036-1042.
  • [13]Galhardo M, Sinkkonen L, Berninger P, Lin J, Sauter T, Heinaniemi M: Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network. Nucleic Acids Res 2013, 42(3):1474-1496.
  • [14]Severino P, Oliveira LS, Torres N, Andreghetto FM, De Fatima Guarizo Klingbeil M, Moyses R, Wunsch-Filho V, Nunes FD, Mathor MB, Paschoal AR, Durham AM: High-throughput sequencing of small RNA transcriptomes reveals critical biological features targeted by microRNAs in cell models used for squamous cell cancer research. BMC Genomics 2013, 14(1):735. BioMed Central Full Text
  • [15]Payne EM, Virgilio M, Narla A, Sun H, Levine M, Paw BH, Berliner N, Look AT, Ebert BL, Khanna-Gupta A: L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del (5q) MDS by activating the mTOR pathway. Blood 2012, 120(11):2214-2224.
  • [16]Storer NY, Zon LI: Zebrafish models of p53 functions. Cold Spring Harb Perspect Biol 2010, 2(8):a001123.
  • [17]Jing L, Zon LI: Zebrafish as a model for normal and malignant hematopoiesis. Dis Model Mech 2011, 4(4):433-438.
  • [18]Jia Q, Zhang Q, Zhang Z, Wang Y, Zhang W, Zhou Y, Wan Y, Cheng T, Zhu X, Fang X, Yuan W, Jia H: Transcriptome analysis of the zebrafish model of Diamond-Blackfan anemia from RPS19 deficiency via p53-dependent and -independent pathways. PLoS One 2013, 8(8):e71782.
  • [19]Nimmo R, Ciau-Uitz A, Ruiz-Herguido C, Soneji S, Bigas A, Patient R, Enver T: MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. Dev Cell 2013, 26(3):237-249.
  • [20]Lu X, Li X, He Q, Gao J, Gao Y, Liu B, Liu F: miR-142-3p regulates the formation and differentiation of hematopoietic stem cells in vertebrates. Cell Res 2013, 23(12):1356-1368.
  • [21]Danilova N, Sakamoto KM, Lin S: Ribosomal protein L11 mutation in zebrafish leads to haematopoietic and metabolic defects. Br J Haematol 2011, 152(2):217-228.
  • [22]Nelson WJ, Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004, 303(5663):1483-1487.
  • [23]Nikaido M, Law EW, Kelsh RN: A systematic survey of expression and function of zebrafish frizzled genes. PLoS One 2013, 8(1):e54833.
  • [24]Gomez G, Lee JH, Veldman MB, Lu J, Xiao XS, Lin S: Identification of vascular and hematopoietic genes downstream of etsrp by deep sequencing in zebrafish. PLoS One 2012, 7(3):e31658.
  • [25]Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003, 4(9):R60. BioMed Central Full Text
  • [26]Choi J, Mouillesseaux K, Wang Z, Fiji HD, Kinderman SS, Otto GW, Geisler R, Kwon O, Chen JN: Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis. Development 2011, 138(6):1173-1181.
  • [27]Kobayashi I, Ono H, Moritomo T, Kano K, Nakanishi T, Suda T: Comparative gene expression analysis of zebrafish and mammals identifies common regulators in hematopoietic stem cells. Blood 2010, 115(2):e1-e9.
  • [28]Woods IG, Lyons DA, Voas MG, Pogoda HM, Talbot WS: nsf is essential for organization of myelinated axons in zebrafish. Curr Biol 2006, 16(7):636-648.
  • [29]Wang H, Kesinger JW, Zhou Q, Wren JD, Martin G, Turner S, Tang Y, Frank MB, Centola M: Identification and characterization of zebrafish ocular formation genes. Genome 2008, 51(3):222-235.
  • [30]Chung AY, Kim MJ, Kim D, Bang S, Hwang SW, Lim CS, Lee S, Park HC, Huh TL: Neuron-specific expression of atp6v0c2 in zebrafish CNS. Dev Dyn 2010, 239(9):2501-2508.
  • [31]Pujic Z, Omori Y, Tsujikawa M, Thisse B, Thisse C, Malicki J: Reverse genetic analysis of neurogenesis in the zebrafish retina. Dev Biol 2006, 293(2):330-347.
  • [32]Nuckels RJ, Ng A, Darland T, Gross JM: The vacuolar-ATPase complex regulates retinoblast proliferation and survival, photoreceptor morphogenesis, and pigmentation in the zebrafish eye. Invest Ophthalmol Vis Sci 2009, 50(2):893-905.
  • [33]Torihara H, Uechi T, Chakraborty A, Shinya M, Sakai N, Kenmochi N: Erythropoiesis failure due to RPS19 deficiency is independent of an activated Tp53 response in a zebrafish model of Diamond-Blackfan anaemia. Br J Haematol 2011, 152(5):648-654.
  • [34]Zhang Z, Jia H, Zhang Q, Wan Y, Zhou Y, Jia Q, Zhang W, Yuan W, Cheng T, Zhu X, Fang X: Assessment of hematopoietic failure due to Rpl11 deficiency in a zebrafish model of Diamond-Blackfan anemia by deep sequencing. BMC Genomics 2013, 14(1):896. BioMed Central Full Text
  • [35]Zhang Y, Duc AC, Rao S, Sun XL, Bilbee AN, Rhodes M, Li Q, Kappes DJ, Rhodes J, Wiest DL: Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. Dev Cell 2013, 24(4):411-425.
  • [36]Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP: Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 1997, 337(22):1584-1590.
  • [37]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller R-U, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter H-I, et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129(7):1401-1414.
  • [38]Westerfield M, Doerry E, Douglas S: Zebrafish in the Net. Trends Genet 1999, 15(6):248-249.
  • [39]Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995, 203(3):253-310.
  • [40]Hr D, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI: Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci 1995, 92(23):10713-10717.
  • [41]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515.
  • [42]Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L: Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 2011, 12(3):R22. BioMed Central Full Text
  • [43]Jiang H, Wong WH: Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 2009, 25(8):1026-1032.
  • [44]Twine NA, Janitz K, Wilkins MR, Janitz M: Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS One 2011, 6(1):e16266.
  • [45]Huang PJ, Liu YC, Lee CC, Lin WC, Gan RRC, Lyu PC, Tang P: DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 2010, 38:W385-W391.
  • [46]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [47]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [48]Schmitt T, Ogris C, Sonnhammer EL: FunCoup 3.0: database of genome-wide functional coupling networks. Nucleic Acids Res 2014, 42(1):D380-D388.
  • [49]Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, Detrich HW 3rd, Vail B, Huber TL, Paw B, Brownlie AJ, Oates AC, Fritz A, Gates MA, Amores A, Bahary N, Talbot WS, Her H, Beier DR, Postlethwait JH, Zon LI: The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol 1998, 197(2):248-269.
  • [50]Harland RM: In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 1991, 36:685-695.
  文献评价指标  
  下载次数:46次 浏览次数:6次