期刊论文详细信息
BMC Microbiology
Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain
Chris D Cox3  Jonathan R Mielenz1  Steven D Brown1  Miguel Rodriguez1  Jessica L Linville2 
[1] Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA;Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA;Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
关键词: Consolidated bioprocessing;    RNA-seq;    Transcriptomic;    Gene expression;    Inhibitor tolerance;    Populus hydrolysate;    Clostridium thermocellum;   
Others  :  1140584
DOI  :  10.1186/s12866-014-0215-5
 received in 2013-10-14, accepted in 2014-08-08,  发布年份 2014
PDF
【 摘 要 】

Background

The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum.

Results

In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms.

Conclusion

These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.

【 授权许可】

   
2014 Linville et al.; licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150325051119826.pdf 1716KB PDF download
Figure 4. 94KB Image download
Figure 3. 36KB Image download
Figure 2. 66KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Palmqvist E, Hahn-Hagerdal B: Fermentation of lignocellulosic hydrolysates: I: inhibition and detoxification. Bioresour Technol 2000, 74(1):17-24.
  • [2]Palmqvist E, Hahn-Hagerdal B: Fermentation of lignocellulosic hydrolysates: II: inhibitors and mechanisms of inhibition. Bioresour Technol 2000, 74(1):25-33.
  • [3]Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA: Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 2001, 12(2):323-337.
  • [4]Hirasawa T, Furusawa C, Shimizu H: Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology? Appl Microbiol Biotechnol 2010, 87(2):391-400.
  • [5]Bergemann TL, Wilson J: Proportion statistics to detect differentially expressed genes: a comparison with log-ratio statistics. BMC Bioinformatics 2011, 12:228. BioMed Central Full Text
  • [6]Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang SH, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M, Ranab B, Shao XJ, Mielenz JR, Smith JC, Keller M, Lynd LR: Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci U S A 2011, 108(33):13752-13757.
  • [7]Yang SH, Land ML, Klingeman DM, Pelletier DA, Lu TYS, Martin SL, Guo HB, Smith JC, Brown SD: Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2010, 107(23):10395-10400.
  • [8]Yang SH, Giannone RJ, Dice L, Yang ZMK, Engle NL, Tschaplinski TJ, Hettich RL, Brown SD: Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genomics 2012, 13:336. BioMed Central Full Text
  • [9]Peng YF, Luo YM, Yu TT, Xu XP, Fan KQ, Zhao YB, Yang KQ: A Blue Native-PAGE analysis of membrane protein complexes in Clostridium thermocellum. BMC Microbiol 2011, 11(1):22. BioMed Central Full Text
  • [10]He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH: Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol 2012, 95(1):189-199.
  • [11]Wang Y, Li XZ, Mao YJ, Blaschek HP: Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics 2012, 13:102. BioMed Central Full Text
  • [12]Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR: Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 2011, 11:134. BioMed Central Full Text
  • [13]Alsaker KV, Paredes C, Papoutsakis ET: Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 2010, 105(6):1131-1147.
  • [14]Wilson CM, Yang SH, Rodriguez M, Ma Q, Johnson CM, Dice L, Xu Y, Brown SD: Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. Biotechnol Biofuels 2013, 6(1):131. BioMed Central Full Text
  • [15]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9):1509-1517.
  • [16]Oshlack A, Robinson MD, Young MD: From RNA-seq reads to differential expression results. Genome Biol 2010, 11(12):10. BioMed Central Full Text
  • [17]Linville JL, Rodriguez M, Land M, Syed MH, Engle NL, Tschaplinski TJ, Mielenz JR, Cox CD: Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum. Plos One 2013, 8(10):16.
  • [18]Linville JL, Rodriguez M, Mielenz JR, Cox CD: Kinetic modeling of batch fermentation for Populus hydrolysate-tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour Technol 2013, 147:605-613.
  • [19]Venkataramanan KP, Jones SW, McCormick KP, Kunjeti SG, Ralston MT, Meyers BC, Papoutsakis ET: The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics 2013, 14:16. BioMed Central Full Text
  • [20]Burgess RR, Anthony L: How sigma docks to RNA polymerase and what sigma does. Curr Opin Microbiol 2001, 4(2):126-131.
  • [21]Moeller R, Vlasic I, Reitz G, Nicholson WL: Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Arch Microbiol 2012, 194(9):759-767.
  • [22]Alper H, Stephanopoulos G: Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 2007, 9(3):258-267.
  • [23]Boor KJ: Bacterial stress responses: what doesn't kill them can make them stronger. PLoS Biol 2006, 4(1):e23.
  • [24]Hosokawa K, Park NH, Inaoka T, Itoh Y, Ochi K: Streptomycin-resistant (rpsL) or rifampicin-resistant (rpoB) mutation in Pseudomonas putida KH146-2 confers enhanced tolerance to organic chemicals. Environ Microbiol 2002, 4(11):703-712.
  • [25]Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R: Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H-2 and ethanol-producing bacteria. BMC Microbiol 2012, 12:295. BioMed Central Full Text
  • [26]Lamed R, Zeikus JG: Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 1980, 144(2):569-578.
  • [27]Deng Y, Olson DG, Zhou JL, Herring CD, Shaw AJ, Lynd LR: Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng 2013, 15:151-158.
  • [28]Rydzak T, Levin DB, Cicek N, Sparling R: End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 2011, 92(1):199-209.
  • [29]Schuchmann K, Muller V: A bacterial electron-bifurcating hydrogenase. J Biol Chem 2012, 287(37):31165-31171.
  • [30]Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK: Coupled ferredoxin and crotonyl coenzyme a (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 2008, 190(3):843-850.
  • [31]Haldenwang WG: The sigma factors of Bacillus subtilis. Microbiol Rev 1995, 59(1):1-30.
  • [32]Shao XJ, Raman B, Zhu MJ, Mielenz JR, Brown SD, Guss AM, Lynd LR: Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol 2011, 92(3):641-652.
  • [33]Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO: Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli Strain LY180. Appl Environ Microbiol 2009, 75(19):6132-6141.
  • [34]Paredes CJ, Alsaker KV, Papoutsakis ET: A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 2005, 3(12):969-978.
  • [35]Mearls EB, Izquierdo JA, Lynd LR: Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms. BMC Microbiol 2012, 12:180. BioMed Central Full Text
  • [36]Fawcett P, Eichenberger P, Losick R, Youngman P: The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 2000, 97(14):8063-8068.
  • [37]Shi Z, Blaschek HP: Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the Shift from acidogenesis to solventogenesis. Appl Environ Microbiol 2008, 74(24):7709-7714.
  • [38]Tomas CA, Alsaker KV, Bonarius HPJ, Hendriksen WT, Yang H, Beamish JA, Paredes CJ, Papoutsakis ET: DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J Bacteriol 2003, 185(15):4539-4547.
  • [39]Hoch JA: Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol 1993, 47:441-465.
  • [40]Al-Hinai MA, Jones SW, Papoutsakis ET: sigmaK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. J Bacteriol 2014, 196(2):287-299.
  • [41]Fineran PC, Charpentier E: Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 2012, 434(2):202-209.
  • [42]Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR: Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 2009, 4(4):e5271.
  • [43]Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y: Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth rate dependent. J Bacteriol 2003, 185(10):3042-3048.
  • [44]Nicolaou SA, Gaida SM, Papoutsakis ET: A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 2010, 12(4):307-331.
  • [45]Zhang Y, Han B, Chukwuemeka Ezeji T: Biotransformation of furfural and 5-hydroxymethylfurfural (HMF) by Clostridium acetobutylicium ATCC 824 during butanol fermentation. New Biotechnol 2011, 29(3):345-351.
  • [46]Stern S, Dror T, Stolovicki E, Brenner N, Braun E: Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge. Mol Syst Biol 2007, 3:106.
  • [47]Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 2007, 82(4):340-349.
  • [48]Wang Q, Venkataramanan KP, Huang H, Papoutsakis ET, Wu CH: Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. BMC Syst Biol 2013, 7:120. BioMed Central Full Text
  • [49]Yu TT, Xu XP, Peng YF, Luo YM, Yang KQ: Cell wall proteome of Clostridium thermocellum and detection of glycoproteins. Microbiol Res 2012, 167(6):364-371.
  • [50]Janssen H, Grimmler C, Ehrenreich A, Bahl H, Fischer RJ: A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum-solvent stress caused by a transient n-butanol pulse. J Biotechnol 2012, 161(3):354-365.
  • [51]Schwarz KM, Kuit W, Grimmler C, Ehrenreich A, Kengen SWM: A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum - cellular behavior in adaptation to n-butanol. J Biotechnol 2012, 161(3):366-377.
  • [52]Fujita Y, Matsuoka H, Hirooka K: Regulation of fatty acid metabolism in bacteria. Mol Microbiol 2007, 66(4):829-839.
  • [53]Xu CG, Huang RR, Teng L, Wang DM, Hemme CL, Borovok I, He Q, Lamed R, Bayer EA, Zhou JZ, Xu J: Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnol Biofuels 2013, 6:15. BioMed Central Full Text
  • [54]Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010, 11:94. BioMed Central Full Text
  • [55]Wilson CM, Rodriguez M Jr, Johnson CM, Martin SL, Chu TM, Wolfinger RD, Hauser LJ, Land ML, Klingeman DM, Syed MH, Ragauskas AJ, Tschaplinski TJ, Mielenz JR, Brown SD: Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. Biotechnol Biofuels 2013, 6(1):179. BioMed Central Full Text
  • [56]Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000, 28(1):33-36.
  • [57]Morris JA, Gardner MJ: Calculating confidence intervals for relative risks (odd ratios) and standardised ratios and rates. Br Med J 1988, 296(6632):1313-1316.
  文献评价指标  
  下载次数:50次 浏览次数:21次