期刊论文详细信息
BMC Genomics
Whole-genome expression profile in zebrafish embryos after chronic exposure to morphine: identification of new genes associated with neuronal function and mu opioid receptor expression
Raquel E Rodríguez4  Roger López-Bellido1  Iván Rodríguez-Martín2  M Javier Herrero-Turrión3 
[1] Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca - Edificio Virgen de la Vega, Salamanca 37007, Spain;Department of Basic Biomedical Sciences, European University of Madrid, Madrid 28670, Spain;Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain;Instituto de Neurociencias de Castilla y León, Department of Biochemistry and Molecular Biology, University of Salamanca, C/ Pintor Fernando Gallego 1, Salamanca 37007, Spain
关键词: Morpholino;    Addiction;    Gene expression;    Mu-opioid receptor;    Real-time quantitative PCR;    Zebrafish;    Microarray;    Morphine;   
Others  :  1128501
DOI  :  10.1186/1471-2164-15-874
 received in 2014-04-25, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

A great number of studies have investigated changes induced by morphine exposure in gene expression using several experimental models. In this study, we examined gene expression changes during chronic exposure to morphine during maturation and differentiation of zebrafish CNS.

Results

Microarray analysis showed 254 genes whose expression was identified as different by at least 1.3 fold change following chronic morphine exposure as compared to controls. Of these, several novel genes (grb2, copb2, otpb, magi1b, grik-l, bnip4 and sox19b) have been detected for the first time in an experimental animal model treated with morphine. We have also identified a subset of genes (dao.1, wls, bnip4 and camk1γb) differentially expressed by chronic morphine exposure whose expression is related to mu opioid receptor gene expression. Altered expression of copb2, bnip4, sox19b, otpb, dao.1, grik-l and wls is indicative of modified neuronal development, CNS patterning processes, differentiation and dopaminergic neurotransmission, serotonergic signaling pathway, and glutamatergic neurotransmission. The deregulation of camk1γb signaling genes suggests an activation of axonogenesis and dendritogenesis.

Conclusions

Our study identified different functional classes of genes and individual candidates involved in the mechanisms underlying susceptibility to morphine actions related to CNS development. These results open new lines to study the treatment of pain and the molecular mechanisms involved in addiction. We also found a set of zebrafish-specific morphine-induced genes, which may be putative targets in human models for addiction and pain processes.

【 授权许可】

   
2014 Herrero-Turrión et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150224010638502.pdf 2654KB PDF download
Figure 7. 96KB Image download
Figure 6. 36KB Image download
Figure 5. 68KB Image download
Figure 4. 117KB Image download
Figure 3. 84KB Image download
Figure 2. 63KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Rodriguez RE: Morphine and microRNA Activity: is there a relation with addiction? Front Genet 2012, 3:223.
  • [2]Stein C: Opioids, sensory systems and chronic pain. Eur J Pharmacol 2013, 716(1–3):179-187.
  • [3]Volkow ND, Li TK: Drug addiction: the neurobiology of behaviour gone awry. Nat Rev Neurosci 2004, 5(12):963-970.
  • [4]Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW: Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 2008, 363(1507):3125-3135.
  • [5]Przewlocki R: Opioid abuse and brain gene expression. Eur J Pharmacol 2004, 500(1–3):331-349.
  • [6]Loguinov AV, Anderson LM, Crosby GJ, Yukhananov RY: Gene expression following acute morphine administration. Physiol Genomics 2001, 6(3):169-181.
  • [7]Ammon-Treiber S, Hollt V: Morphine-induced changes of gene expression in the brain. Addict Biol 2005, 10(1):81-89.
  • [8]Anghel A, Jamieson CA, Ren X, Young J, Porche R, Ozigbo E, Ghods DE, Lee ML, Liu Y, Lutfy K, Friedman TC: Gene expression profiling following short-term and long-term morphine exposure in mice uncovers genes involved in food intake. Neuroscience 2010, 167(2):554-566.
  • [9]Grice DE, Reenila I, Mannisto PT, Brooks AI, Smith GG, Golden GT, Buxbaum JD, Berrettini WH: Transcriptional profiling of C57 and DBA strains of mice in the absence and presence of morphine. BMC Genomics 2007, 8:76. BioMed Central Full Text
  • [10]Juul SE, Beyer RP, Bammler TK, Farin FM, Gleason CA: Effects of neonatal stress and morphine on murine hippocampal gene expression. Pediatr Res 2011, 69(4):285-292.
  • [11]Korostynski M, Kaminska-Chowaniec D, Piechota M, Przewlocki R: Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes. BMC Genomics 2006, 7:146. BioMed Central Full Text
  • [12]Korostynski M, Piechota M, Kaminska D, Solecki W, Przewlocki R: Morphine effects on striatal transcriptome in mice. Genome Biol 2007, 8(6):R128. BioMed Central Full Text
  • [13]McClung CA, Nestler EJ, Zachariou V: Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 2005, 25(25):6005-6015.
  • [14]Piechota M, Korostynski M, Solecki W, Gieryk A, Slezak M, Bilecki W, Ziolkowska B, Kostrzewa E, Cymerman I, Swiech L, Jaworski J, Przewlocki R: The dissection of transcriptional modules regulated by various drugs of abuse in the mouse striatum. Genome Biol 2010, 11(5):R48. BioMed Central Full Text
  • [15]Rhodes JS, Crabbe JC: Gene expression induced by drugs of abuse. Curr Opin Pharmacol 2005, 5(1):26-33.
  • [16]Rodriguez Parkitna JM, Bilecki W, Mierzejewski P, Stefanski R, Ligeza A, Bargiela A, Ziolkowska B, Kostowski W, Przewlocki R: Effects of morphine on gene expression in the rat amygdala. J Neurochem 2004, 91(1):38-48.
  • [17]Tapocik JD, Luu TV, Mayo CL, Wang BD, Doyle E, Lee AD, Lee NH, Elmer GI: Neuroplasticity, axonal guidance and micro-RNA genes are associated with morphine self-administration behavior. Addict Biol 2013, 18(3):480-495.
  • [18]Tapocik JD, Letwin N, Mayo CL, Frank B, Luu T, Achinike O, House C, Williams R, Elmer GI, Lee NH: Identification of candidate genes and gene networks specifically associated with analgesic tolerance to morphine. J Neurosci 2009, 29(16):5295-5307.
  • [19]Ziolkowska B, Korostynski M, Piechota M, Kubik J, Przewlocki R: Effects of morphine on immediate-early gene expression in the striatum of C57BL/6 J and DBA/2 J mice. Pharmacol Rep 2012, 64(5):1091-1104.
  • [20]Hassan HE, Myers AL, Lee IJ, Chen H, Coop A, Eddington ND: Regulation of gene expression in brain tissues of rats repeatedly treated by the highly abused opioid agonist, oxycodone: microarray profiling and gene mapping analysis. Drug Metab Dispos 2010, 38(1):157-167.
  • [21]Yuferov V, Nielsen D, Butelman E, Kreek MJ: Microarray studies of psychostimulant-induced changes in gene expression. Addict Biol 2005, 10(1):101-118.
  • [22]Albertson DN, Schmidt CJ, Kapatos G, Bannon MJ: Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. Neuropsychopharmacology 2006, 31(10):2304-2312.
  • [23]Lehrmann E, Colantuoni C, Deep-Soboslay A, Becker KG, Lowe R, Huestis MA, Hyde TM, Kleinman JE, Freed WJ: Transcriptional changes common to human cocaine, cannabis and phencyclidine abuse. PLoS One 2006, 1:e114.
  • [24]Piechota M, Korostynski M, Sikora M, Golda S, Dzbek J, Przewlocki R: Common transcriptional effects in the mouse striatum following chronic treatment with heroin and methamphetamine. Genes Brain Behav 2012, 11(4):404-414.
  • [25]Korostynski M, Piechota M, Dzbek J, Mlynarski W, Szklarczyk K, Ziolkowska B, Przewlocki R: Novel drug-regulated transcriptional networks in brain reveal pharmacological properties of psychotropic drugs. BMC Genomics 2013, 14(1):606. BioMed Central Full Text
  • [26]Kily LJ, Cowe YC, Hussain O, Patel S, McElwaine S, Cotter FE, Brennan CH: Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 2008, 211(Pt 10):1623-1634.
  • [27]Webb KJ, Norton WH, Trumbach D, Meijer AH, Ninkovic J, Topp S, Heck D, Marr C, Wurst W, Theis FJ, Spaink HP, Bally-Cuif L: Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biol 2009, 10(7):R81. BioMed Central Full Text
  • [28]Pan Y, Kaiguo M, Razak Z, Westwood JT, Gerlai R: Chronic alcohol exposure induced gene expression changes in the zebrafish brain. Behav Brain Res 2011, 216(1):66-76.
  • [29]Tzschentke TM: Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007, 12(3–4):227-462.
  • [30]Lau B, Bretaud S, Huang Y, Lin E, Guo S: Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav 2006, 5(7):497-505.
  • [31]Ninkovic J, Bally-Cuif L: The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 2006, 39(3):262-274.
  • [32]Bretaud S, Li Q, Lockwood BL, Kobayashi K, Lin E, Guo S: A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 2007, 146(3):1109-1116.
  • [33]Santoriello C, Zon LI: Hooked! Modeling human disease in zebrafish. J Clin Invest 2012, 122(7):2337-2343.
  • [34]Lohi O, Parikka M, Ramet M: The zebrafish as a model for paediatric diseases. Acta Paediatr 2013, 102(2):104-110.
  • [35]Kari G, Rodeck U, Dicker AP: Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 2007, 82(1):70-80.
  • [36]Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G: Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 2009, 10(2):116-124.
  • [37]Guo S: Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin Drug Discov 2009, 4(7):715-726.
  • [38]Cachat J, Canavello P, Elegante M, Bartels B, Hart P, Bergner C, Egan R, Duncan A, Tien D, Chung A, Wong K, Goodspeed J, Tan J, Grimes C, Elkhayat S, Suciu C, Rosenberg M, Chung KM, Kadri F, Roy S, Gaikwad S, Stewart A, Zapolsky I, Gilder T, Mohnot S, Beeson E, Amri H, Zukowska Z, Soignier RD, Kalueff AV: Modeling withdrawal syndrome in zebrafish. Behav Brain Res 2010, 208(2):371-376.
  • [39]Stewart A, Wong K, Cachat J, Gaikwad S, Kyzar E, Wu N, Hart P, Piet V, Utterback E, Elegante M, Tien D, Kalueff AV: Zebrafish models to study drug abuse-related phenotypes. Rev Neurosci 2011, 22(1):95-105.
  • [40]Nasiraei-Moghadam S, Sahraei H, Bahadoran H, Sadooghi M, Salimi SH, Kaka GR, Imani H, Mahdavi-Nasab H, Dashtnavard H: Effects of maternal oral morphine consumption on neural tube development in Wistar rats. Brain Res Dev Brain Res 2005, 159(1):12-17.
  • [41]Nasiraei-Moghadam S, Kazeminezhad B, Dargahi L, Ahmadiani A: Maternal oral consumption of morphine increases Bax/Bcl-2 ratio and caspase 3 activity during early neural system development in rat embryos. J Mol Neurosci 2010, 41(1):156-164.
  • [42]Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995, 203(3):253-310.
  • [43]Wilson SW, Brand M, Eisen JS: Patterning the zebrafish central nervous system. Results Probl Cell Differ 2002, 40:181-215.
  • [44]Gonzalez-Nunez V, Rodriguez RE: The zebrafish: a model to study the endogenous mechanisms of pain. ILAR J 2009, 50(4):373-386.
  • [45]Herrero-Turrion MJ, Sánchez-Simón FM, Rodríguez RE: Opioids and Opioid Receptors in Fishes. In Encyclopedia of Fish Physiology from Genome to Environment. 2011 edition. Edited by Farrell AP. Academic Press; 2011:89-97.
  • [46]de Velasco EM, Law PY, Rodriguez RE: Mu opioid receptor from the zebrafish exhibits functional characteristics as those of mammalian mu opioid receptor. Zebrafish 2009, 6(3):259-268.
  • [47]Le Merrer J, Becker JA, Befort K, Kieffer BL: Reward processing by the opioid system in the brain. Physiol Rev 2009, 89(4):1379-1412.
  • [48]Charbogne P, Kieffer BL, Befort K: 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology 2014, 76:204-217.
  • [49]Sanchez-Simon FM, Rodriguez RE: Developmental expression and distribution of opioid receptors in zebrafish. Neuroscience 2008, 151(1):129-137.
  • [50]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64(15):5245-5250.
  • [51]Yoshikawa M, Andoh H, Ito K, Suzuki T, Kawaguchi M, Kobayashi H, Oka T, Hashimoto A: Acute treatment with morphine augments the expression of serine racemase and D-amino acid oxidase mRNAs in rat brain. Eur J Pharmacol 2005, 525(1–3):94-97.
  • [52]Yoshikawa M, Shinomiya T, Takayasu N, Tsukamoto H, Kawaguchi M, Kobayashi H, Oka T, Hashimoto A: Long-term treatment with morphine increases the D-serine content in the rat brain by regulating the mRNA and protein expressions of serine racemase and D-amino acid oxidase. J Pharmacol Sci 2008, 107(3):270-276.
  • [53]Morey JS, Ryan JC, Van Dolah FM: Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced 2006, 8:175-193.
  • [54]Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE: Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol 2010, 78(5):935-942.
  • [55]Lopez-Bellido R, Barreto-Valer K, Rodriguez RE: Substance P mRNA expression during zebrafish development: influence of mu opioid receptor and cocaine. Neuroscience 2013, 242:53-68.
  • [56]Lopez-Bellido R, Barreto-Valer K, Sanchez-Simon FM, Rodriguez RE: Cocaine modulates the expression of opioid receptors and miR-let-7d in zebrafish embryos. PLoS One 2012, 7(11):e50885.
  • [57]Befort K, Filliol D, Darcq E, Ghate A, Matifas A, Lardenois A, Muller J, Thibault C, Dembele D, Poch O, Kieffer BL: Gene expression is altered in the lateral hypothalamus upon activation of the mu opioid receptor. Ann N Y Acad Sci 2008, 1129:175-184.
  • [58]Befort K, Filliol D, Ghate A, Darcq E, Matifas A, Muller J, Lardenois A, Thibault C, Dembele D, Le Merrer J, Becker JA, Poch O, Kieffer BL: Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur J Neurosci 2008, 27(11):2973-2984.
  • [59]Downing C, Flink S, Florez-McClure ML, Johnson TE, Tabakoff B, Kechris KJ: Gene expression changes in C57BL/6 J and DBA/2 J mice following prenatal alcohol exposure. Alcohol Clin Exp Res 2012, 36(9):1519-1529.
  • [60]Jones HE, Heil SH, Baewert A, Arria AM, Kaltenbach K, Martin PR, Coyle MG, Selby P, Stine SM, Fischer G: Buprenorphine treatment of opioid-dependent pregnant women: a comprehensive review. Addiction 2012, 107(Suppl 1):5-27.
  • [61]Saurer TB, Ijames SG, Carrigan KA, Lysle DT: Neuroimmune mechanisms of opioid-mediated conditioned immunomodulation. Brain Behav Immun 2008, 22(1):89-97.
  • [62]Hays SL, McPherson RJ, Juul SE, Wallace G, Schindler AG, Chavkin C, Gleason CA: Long-term effects of neonatal stress on adult conditioned place preference (CPP) and hippocampal neurogenesis. Behav Brain Res 2012, 227(1):7-11.
  • [63]Barreto-Valer K, Lopez-Bellido R, Rodriguez RE: Cocaine modulates the expression of transcription factors related to the dopaminergic system in zebrafish. Neuroscience 2013, 231:258-271.
  • [64]Perez-Cadahia B, Drobic B, Davie JR: Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 2011, 89(1):61-73.
  • [65]Postlethwait JH: The zebrafish genome in context: ohnologs gone missing. J Exp Zool B Mol Dev Evol 2007, 308(5):563-577.
  • [66]Orsini C, Bonito-Oliva A, Conversi D, Cabib S: Susceptibility to conditioned place preference induced by addictive drugs in mice of the C57BL/6 and DBA/2 inbred strains. Psychopharmacology (Berl) 2005, 181(2):327-336.
  • [67]Girard F, Cremazy F, Berta P, Renucci A: Expression pattern of the Sox31 gene during zebrafish embryonic development. Mech Dev 2001, 100(1):71-73.
  • [68]Hu SN, Yu H, Zhang YB, Wu ZL, Yan YC, Li YX, Li YY, Li YP: Splice blocking of zygotic sox31 leads to developmental arrest shortly after Mid-Blastula Transition and induces apoptosis in zebrafish. FEBS Lett 2012, 586(3):222-228.
  • [69]Hu S, Wu Z, Yan Y, Li Y: Sox31 is involved in central nervous system anteroposterior regionalization through regulating the organizer activity in zebrafish. Acta Biochim Biophys Sin (Shanghai) 2011, 43(5):387-399.
  • [70]Frederick AL, Stanwood GD: Drugs, biogenic amine targets and the developing brain. Dev Neurosci 2009, 31(1–2):7-22.
  • [71]Gianoulakis C: Endogenous opioids and addiction to alcohol and other drugs of abuse. Curr Top Med Chem 2009, 9(11):999-1015.
  • [72]Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD: Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol 2011, 33(6):608-617.
  • [73]Klee EW, Schneider H, Clark KJ, Cousin MA, Ebbert JO, Hooten WM, Karpyak VM, Warner DO, Ekker SC: Zebrafish: a model for the study of addiction genetics. Hum Genet 2012, 131(6):977-1008.
  • [74]Schweitzer J, Driever W: Development of the dopamine systems in zebrafish. Adv Exp Med Biol 2009, 651:1-14.
  • [75]Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W: Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Commun 2011, 2:171.
  • [76]Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V: The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 2010, 40(1):46-57.
  • [77]Kastenhuber E, Kratochwil CF, Ryu S, Schweitzer J, Driever W: Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. J Comp Neurol 2010, 518(4):439-458.
  • [78]Del Giacco L, Sordino P, Pistocchi A, Andreakis N, Tarallo R, Di Benedetto B, Cotelli F: Differential regulation of the zebrafish orthopedia 1 gene during fate determination of diencephalic neurons. BMC Dev Biol 2006, 6:50. BioMed Central Full Text
  • [79]Ryu S, Mahler J, Acampora D, Holzschuh J, Erhardt S, Omodei D, Simeone A, Driever W: Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr Biol 2007, 17(10):873-880.
  • [80]Wolf A, Ryu S: Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development 2013, 140(8):1762-1773.
  • [81]Eaton JL, Holmqvist B, Glasgow E: Ontogeny of vasotocin-expressing cells in zebrafish: selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area. Dev Dyn 2008, 237(4):995-1005.
  • [82]Eaton JL, Glasgow E: Zebrafish orthopedia (otp) is required for isotocin cell development. Dev Genes Evol 2007, 217(2):149-158.
  • [83]Fernandes AM, Beddows E, Filippi A, Driever W: Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS One 2013, 8(9):e75002.
  • [84]Li D, Roberts R: WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 2001, 58(14):2085-2097.
  • [85]Zhang X, Wang W, Bedigian AV, Coughlin ML, Mitchison TJ, Eggert US: Dopamine receptor D3 regulates endocytic sorting by a Prazosin-sensitive interaction with the coatomer COPI. Proc Natl Acad Sci U S A 2012, 109(31):12485-12490.
  • [86]Feng X, Liu X, Zhang W, Xiao W: p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J 2011, 30(16):3397-3415.
  • [87]Cho B, Choi SY, Park OH, Sun W, Geum D: Differential expression of BNIP family members of BH3-only proteins during the development and after axotomy in the rat. Mol Cells 2012, 33(6):605-610.
  • [88]Tohda M, Hayashi H, Sukma M, Tanaka K: BNIP-3: a novel candidate for an intrinsic depression-related factor found in NG108-15 cells treated with Hochu-ekki-to, a traditional oriental medicine, or typical antidepressants. Neurosci Res 2008, 62(1):1-8.
  • [89]Tohda M, Mingmalairak S, Murakami Y, Matsumoto K: Enhanced expression of BCL2/adenovirus EIB 19-kDa-interacting protein 3 mRNA, a candidate for intrinsic depression-related factor, and effects of imipramine in the frontal cortex of stressed mice. Biol Pharm Bull 2010, 33(1):53-57.
  • [90]Lopez-Gimenez JF, Vilaro MT, Milligan G: Morphine desensitization, internalization, and down-regulation of the mu opioid receptor is facilitated by serotonin 5-hydroxytryptamine2A receptor coactivation. Mol Pharmacol 2008, 74(5):1278-1291.
  • [91]Kalivas PW: The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009, 10(8):561-572.
  • [92]Spijker S, Houtzager SW, De Gunst MC, De Boer WP, Schoffelmeer AN, Smit AB: Morphine exposure and abstinence define specific stages of gene expression in the rat nucleus accumbens. FASEB J 2004, 18(7):848-850.
  • [93]Shleper M, Kartvelishvily E, Wolosker H: D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 2005, 25(41):9413-9417.
  • [94]Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G: Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 2007, 64(11):1373-1394.
  • [95]Wang YX, Gong N, Xin YF, Hao B, Zhou XJ, Pang CC: Biological implications of oxidation and unidirectional chiral inversion of D-amino acids. Curr Drug Metab 2012, 13(3):321-331.
  • [96]Gong N, Li XY, Xiao Q, Wang YX: Identification of a Novel Spinal Dorsal Horn Astroglial D-Amino Acid Oxidase-Hydrogen Peroxide Pathway Involved in Morphine Antinociceptive Tolerance. Anesthesiology 2014, 120(4):962-975.
  • [97]Zhao WJ, Gao ZY, Wei H, Nie HZ, Zhao Q, Zhou XJ, Wang YX: Spinal D-amino acid oxidase contributes to neuropathic pain in rats. J Pharmacol Exp Ther 2010, 332(1):248-254.
  • [98]Kanai Y, Clemencon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA: The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 2013, 34(2–3):108-120.
  • [99]Sacchi S: D-Serine metabolism: new insights into the modulation of D-amino acid oxidase activity. Biochem Soc Trans 2013, 41(6):1551-1556.
  • [100]Xu J, Srinivas BP, Tay SY, Mak A, Yu X, Lee SG, Yang H, Govindarajan KR, Leong B, Bourque G, Mathavan S, Roy S: Genomewide expression profiling in the zebrafish embryo identifies target genes regulated by Hedgehog signaling during vertebrate development. Genetics 2006, 174(2):735-752.
  • [101]Jacobs EH, Wardeh G, Smit AB, Schoffelmeer AN: Morphine causes a delayed increase in glutamate receptor functioning in the nucleus accumbens core. Eur J Pharmacol 2005, 511(1):27-30.
  • [102]Nakagawa T, Satoh M: Involvement of glial glutamate transporters in morphine dependence. Ann N Y Acad Sci 2004, 1025:383-388.
  • [103]Gesemann M, Lesslauer A, Maurer CM, Schonthaler HB, Neuhauss SC: Phylogenetic analysis of the vertebrate excitatory/neutral amino acid transporter (SLC1/EAAT) family reveals lineage specific subfamilies. BMC Evol Biol 2010, 10:117. BioMed Central Full Text
  • [104]Nakagawa T, Kaneko S: SLC1 glutamate transporters and diseases: psychiatric diseases and pathological pain. Curr Mol Pharmacol 2013, 6(2):66-73.
  • [105]Ozawa T, Nakagawa T, Shige K, Minami M, Satoh M: Changes in the expression of glial glutamate transporters in the rat brain accompanied with morphine dependence and naloxone-precipitated withdrawal. Brain Res 2001, 905(1–2):254-258.
  • [106]Wang J, Yuan W, Li MD: Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 2011, 44(3):269-286.
  • [107]Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA: Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci 2009, 29(31):9794-9808.
  • [108]Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR: Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 2008, 59(6):914-931.
  • [109]Das S, Yu S, Sakamori R, Stypulkowski E, Gao N: Wntless in Wnt secretion: molecular, cellular and genetic aspects. Front Biol (Beijing) 2012, 7(6):587-593.
  • [110]Jin J, Morse M, Frey C, Petko J, Levenson R: Expression of GPR177 (Wntless/Evi/Sprinter), a highly conserved Wnt-transport protein, in rat tissues, zebrafish embryos, and cultured human cells. Dev Dyn 2010, 239(9):2426-2434.
  • [111]Wang LT, Wang SJ, Hsu SH: Functional characterization of mammalian Wntless homolog in mammalian system. Kaohsiung J Med Sci 2012, 28(7):355-361.
  • [112]Zhu X, Zhu H, Zhang L, Huang S, Cao J, Ma G, Feng G, He L, Yang Y, Guo X: Wls-mediated Wnts differentially regulate distal limb patterning and tissue morphogenesis. Dev Biol 2012, 365(2):328-338.
  • [113]Jin J, Kittanakom S, Wong V, Reyes BA, Van Bockstaele EJ, Stagljar I, Berrettini W, Levenson R: Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci 2010, 11:33. BioMed Central Full Text
  • [114]Reyes AR, Levenson R, Berrettini W, Van Bockstaele EJ: Ultrastructural relationship between the mu opioid receptor and its interacting protein, GPR177, in striatal neurons. Brain Res 2010, 1358:71-80.
  • [115]Milligan G: Opioid receptors and their interacting proteins. Neuromolecular Med 2005, 7(1–2):51-59.
  • [116]Reyes BA, Vakharia K, Ferraro TN, Levenson R, Berrettini WH, Van Bockstaele EJ: Opiate agonist-induced re-distribution of Wntless, a mu-opioid receptor interacting protein, in rat striatal neurons. Exp Neurol 2012, 233(1):205-213.
  • [117]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
  • [118]Li C, Wong WH: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 2001, 98(1):31-36.
  • [119]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2):185-193.
  • [120]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31(4):e15.
  • [121]Barash Y, Dehan E, Krupsky M, Franklin W, Geraci M, Friedman N, Kaminski N: Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays. Bioinformatics 2004, 20(6):839-846.
  • [122]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-5121.
  • [123]Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001, 125(1–2):279-284.
  • [124]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [125]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
  • [126]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3(6):1101-1108.
  • [127]Nasevicius A, Ekker SC: Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 2000, 26(2):216-220.
  文献评价指标  
  下载次数:33次 浏览次数:8次