期刊论文详细信息
BMC Complementary and Alternative Medicine
Effects of aqueous leaf extract of Asystasia gangetica on the blood pressure and heart rate in male spontaneously hypertensive Wistar rats
Ismaila A Raji2  Pierre Mugabo1 
[1] Discipline of Pharmacology, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;Division of Basic Medical Sciences, Faculty of Medicine, National University of Science and Technology, PO Box AC 939, Ascot, Bulawayo, Zimbabwe
关键词: Renin angiotensin aldosterone system;    Spontaneously hypertensive rats;    Heart rate;    Blood pressure;    Asystasia gangetica;   
Others  :  1220877
DOI  :  10.1186/1472-6882-13-283
 received in 2013-07-08, accepted in 2013-10-24,  发布年份 2013
PDF
【 摘 要 】

Background

Asystasia gangentica (A. gangetica) belongs to the family Acanthaceae. It is used to treat hypertension, rheumatism, asthma, diabetes mellitus, and as an anthelmintic in South Africa, India, Cameroun, Nigeria, and Kenya respectively. It has also been reported to inhibit the angiotensin I converting enzyme (ACE) in-vitro. Therefore, the aim of this study is to investigate the in-vivo effect of aqueous leaf extract (ALE) of A. gangetica on the blood pressure (BP) and heart rate (HR) in anaesthetized male spontaneously hypertensive rats (SHR); and to elucidate possible mechanism(s) by which it acts.

Methods

The ALE of A. gangetica (10–400 mg/kg), angiotensin I human acetate salt hydrate (ANG I, 3.1–100 μg/kg) and angiotensin II human (ANG II, 3.1–50 μg/kg) were administered intravenously. The BP and HR were measured via a pressure transducer connecting the femoral artery to a Powerlab and a computer for recording.

Results

A. gangetica significantly (p<0.05), and dose-dependently reduced the systolic, diastolic, and mean arterial BP. The significant (p<0.05) reductions in HR were not dose-dependent. Both ANG I and ANG II increased the BP dose-dependently. Co-infusion of A. gangetica (200 mg/kg) with either ANG I or ANG II significantly (p<0.05) suppressed the hypertensive effect of both ANG I and ANG II respectively, and was associated with reductions in HR.

Conclusions

A. gangetica ALE reduced BP and HR in the SHR. The reduction in BP may be a result of actions of the ALE on the ACE, the ANG II receptors and the heart rate.

【 授权许可】

   
2013 Mugabo and Raji; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150725044335748.pdf 631KB PDF download
Figure 5. 39KB Image download
Figure 4. 20KB Image download
Figure 3. 45KB Image download
Figure 2. 23KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gurib-Fakim A: Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006, 27(1):1-93.
  • [2]Samuelsson G: Drugs of Natural Origin: a Textbook of Pharmacognosy. Stockholm: Swedish Pharmaceutical Press; 2004.
  • [3]Balick MJ, Cox PA: Plants, People, and Culture: the Science of Ethnobotany. New York: NY Scientific American Library; 1997.
  • [4]Scriba GE, Sweetman SC: Martindale: The complete drug reference. Chromatographia 2011, 74(7–8):647-648.
  • [5]Volpe M, Tocci G: Rationale for triple fixed-dose combination therapy with an angiotensin II receptor blocker, a calcium channel blocker, and a thiazide diuretic. Vasc Health Risk Manag 2012, 8:371-380.
  • [6]Tocci G, Paneni F, Passerini J, Volpe M: Triple combination therapy to improve blood pressure control: experience with olmesartan-amlodipine-hydrochlorothiazide therapy. Expert Opin Pharmacother 2012, 13(18):2687-2697.
  • [7]Laurent S, Schlaich M, Esler M: New drugs, procedures, and devices for hypertension. Lancet 2012, 380(9841):591-600.
  • [8]Carvalho MF, Romano-Lieber NS, Bergsten-Mendes G, Secoli SR, Ribeiro E, Lebrao ML, Duarte YA: Polypharmacy among the elderly in the city of Sao Paulo, Brazil - SABE Study. Rev Bras Epidemiol 2012, 15(4):817-827.
  • [9]Dunn SP, Holmes DR Jr, Moliterno DJ: Drug-drug interactions in cardiovascular catheterizations and interventions. JACC Cardiovasc Interv 2012, 5(12):1195-1208.
  • [10]Lee VW, Pang KK, Hui KC, Kwok JC, Leung SL, Yu DS, Lee DT: Medication adherence: Is it a hidden drug-related problem in hidden elderly? Geriatr Gerontol Int 2013, 13(4):978-985.
  • [11]Adeyemi OO, Aigbe FR, Uyaiabasi NG: Analgesic and anti-inflammatory activities of the aqueous stem and leaf extract of Asystasia gangetica (Linn) T. Anderson. Nig Q J Hosp Med 2011, 21(2):129-134.
  • [12]Ramesar S, Baijnath H, Govender T, Mackraj I: Angiotensin I-converting enzyme inhibitor activity of nutritive plants in KwaZulu-Natal. J Med Food 2008, 11(2):331-336.
  • [13]Akah PA, Ezike AC, Nwafor SV, Okoli CO, Enwerem NM: Evaluation of the anti-asthmatic property of Asystasia gangetica leaf extracts. J Ethnopharmacol 2003, 89(1):25-36.
  • [14]Kokwaro JO: Medicinal plants of east Africa. 3rd edition. University of Nairobi Press; 2009:478.
  • [15]Sudhakar M, Rao CV, Rao PM, Raju DB, Venkateswarlu Y: Antimicrobial activity of Caesalpinia pulcherrima, Euphorbia hirta and Asystasia gangeticum. Fitoterapia 2006, 77(5):378-380.
  • [16]Suzuki A, Kagawa D, Ochiai R, Tokimitsu I, Saito I: Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertension Research: Official Journal of the Japanese Society of Hypertension 2002, 25(1):99-107.
  • [17]Mackraj I, Ramesar S, Singh M, Govender T, Baijnath H, Singh R, Gathiram P: The in vivo effects of Tulbhagia violacea on blood pressure in a salt-sensitive rat model. J Ethnopharmacol 2008, 117(2):263-269.
  • [18]Isaacson JS, Reid IA: Importance of endogenous angiotensin II in the cardiovascular responses to sympathetic stimulation in conscious rabbits. Circulation research 1990, 66(3):662-671.
  • [19]Hearse DJ, Sutherland FJ: Experimental models for the study of cardiovascular function and disease. Pharmacol Res 2000, 41(6):597-603.
  • [20]Pende A, Dallegri F: Renin-angiotensin antagonists: therapeutic effects beyond blood pressure control? Curr Pharm Des 2012, 18(7):1011-1020.
  • [21]Bakris GL: Are There Effects of Renin–Angiotensin System Antagonists Beyond Blood Pressure Control? Am J Cardiol 2010, 105(suppl):21A-29A.
  • [22]Kumagai K, Reid IA: Angiotensin II exerts differential actions on renal nerve activity and heart rate. Hypertension 1994, 24(4):451-456.
  • [23]Averill DB: Neurochemical and peptidergic pathways of the baroreflex arc in the medulla oblongata: an introduction. Brain Res Bull 2000, 51(2):103-105.
  • [24]Averill DB, Diz DI: Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 2000, 51(2):119-128.
  • [25]Diz DI, Garcia-Espinosa MA, Gallagher PE, Ganten D, Ferrario CM, Averill DB: Angiotensin-(1–7) and Baroreflex Function in Nucleus Tractus Solitarii of (mRen2) 27 Transgenic Rats. J Cardiovasc Pharmacol 2008, 51(6):542-548.
  • [26]Hilzendeger AM, da Costa Goncalves AC, Plehm R, Diedrich A, Gross V, Pesquero JB, Bader M: Autonomic dysregulation in ob/ob mice is improved by inhibition of angiotensin-converting enzyme. J Mol Med 2010, 88(4):383-390.
  • [27]Arnold AC, Shaltout HA, Gilliam-Davis S, Kock ND, Diz DI: Autonomic control of the heart is altered in Sprague–Dawley rats with spontaneous hydronephrosis. Am J Physiol Heart Circ Physiol 2011, 300(6):H2206-H2213.
  • [28]Veerasingham SJ, Raizada MK: Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharmacol 2003, 139(2):191-202.
  • [29]Toda N, Ayajiki K, Okamura T: Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev 2007, 59(1):54-87.
  • [30]Skrbic R, Igic R: Seven decades of angiotensin (1939–2009). Peptides 2009, 30(10):1945-1950.
  • [31]Marchesi C, Paradis P, Schiffrin EL: Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 2008, 29(7):367-374.
  • [32]Ferrario CM: Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. Journal of the Renin-Angiotensin-Aldosterone System: JRAAS 2006, 7(1):3-14.
  • [33]Unger T: Stoppelhaar M: Rationale for Double Renin-Angiotensin-Aldosterone System Blockade. Am J Cardiol 2007, 100(3, Supplement 1):S2-S31.
  • [34]Kobori H, Nangaku M, Navar LG, Nishiyama A: The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007, 59(3):251-287.
  • [35]Fujiwara Y, Tanoue A, Tsujimoto G, Koshimizu TA: The roles of V1a vasopressin receptors in blood pressure homeostasis: a review of studies on V1a receptor knockout mice. Clin Exp Nephrol 2011, 16(1):30-34. Epub 2011
  • [36]Shimizu F, Kasai T, Takamata A: Involvement of central angiotensin II type 1 receptors in LPS-induced systemic vasopressin release and blood pressure regulation in rats. J Appl Physiol(Bethesda, Md: 1985) 2009, 106(6):1943-1948.
  • [37]Siragy HM: Angiotensin II compartmentalization within the kidney: effects of salt diet and blood pressure alterations. Curr Opin Nephrol Hypertens 2006, 15(1):50-53.
  • [38]Navar LG, Harrison-Bernard LM, Imig JD, Wang CT, Cervenka L, Mitchell KD: Intrarenal angiotensin II generation and renal effects of AT1 receptor blockade. Journal of the American Society of Nephrology: JASN 1999, 10(Suppl 12):S266-S272.
  • [39]Head GA: Role of AT1 receptors in the central control of sympathetic vasomotor function. Clin Exp Pharmacol Physiol Suppl 1996, 3:S93-S98.
  文献评价指标  
  下载次数:52次 浏览次数:7次