期刊论文详细信息
BMC Microbiology
Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity
Mika T Tarkka6  François Buscot6  Sylvie Herrmann2  Tesfaye Wubet1  Václav Krištůfek3  Tilmann Weber5  Thomas R Neu7  Lasse Feldhahn4  Katharina Zeitler4  Florence Kurth4 
[1] German Centre for Integrative Biodiversity Research, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany;Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany;Biology Centre AS CR, v. v. i. - Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic;Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany;Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen, Germany;Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany;Department River Ecology, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, 39114 Magdeburg, Germany
关键词: Microbial community;    Rhizosphere;    Real-time PCR;    Oak;    Streptomycetes;   
Others  :  1143062
DOI  :  10.1186/1471-2180-13-205
 received in 2013-04-29, accepted in 2013-09-10,  发布年份 2013
PDF
【 摘 要 】

Background

Host plant roots, mycorrhizal mycelium and microbes are important and potentially interacting factors shaping the performance of mycorrhization helper bacteria (MHB). We investigated the impact of a soil microbial community on the interaction between the extraradical mycelium of the ectomycorrhizal fungus Piloderma croceum and the MHB Streptomyces sp. AcH 505 in both the presence and the absence of pedunculate oak microcuttings.

Results

Specific primers were designed to target the internal transcribed spacer of the rDNA and an intergenic region between two protein encoding genes of P. croceum and the intergenic region between the gyrA and gyrB genes of AcH 505. These primers were used to perform real-time PCR with DNA extracted from soil samples. With a sensitivity of 10 genome copies and a linear range of 6 orders of magnitude, these real-time PCR assays enabled the quantification of purified DNA from P. croceum and AcH 505, respectively. In soil microcosms, the fungal PCR signal was not affected by AcH 505 in the absence of the host plant. However, the fungal signal became weaker in the presence of the plant. This decrease was only observed in microbial filtrate amended microcosms. In contrast, the PCR signal of AcH 505 increased in the presence of P. croceum. The increase was not significant in sterile microcosms that contained plant roots.

Conclusions

Real-time quantitative PCR assays provide a method for directly detecting and quantifying MHB and mycorrhizal fungi in plant microcosms. Our study indicates that the presence of microorganisms and plant roots can both affect the nature of MHB-fungus interactions, and that mycorrhizal fungi may enhance MHB growth.

【 授权许可】

   
2013 Kurth et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328225416150.pdf 1692KB PDF download
Figure 5. 140KB Image download
Figure 4. 71KB Image download
Figure 3. 70KB Image download
Figure 2. 88KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A: Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 2012, 159:789.
  • [2]Smith SE, Read DJ: Mycorrhizal symbiosis. Academic Press; 2008.
  • [3]Garbaye J: Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 1994, 128:197-210.
  • [4]Frey-Klett P, Garbaye J, Tarkka M: The mycorrhiza helper bacteria revisited. New Phytol 2007, 176:22-36.
  • [5]Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP: Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 2006, 72:3550-3557.
  • [6]Brulé C, Frey-Klett P, Pierrat JC, Courrier S, Gerard F, Lemoine MC, Rousselet JL, Sommer G, Garbaye J: Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 2001, 33:1683-1694.
  • [7]Vivas A, Barea JM, Azcón R: Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn concentrations. Microb Ecol 2005, 49:416-424.
  • [8]Duponnois R: Les bacteries auxilaires de la mycorrhization du Douglas (Pseudotsuga menziessii (Mirb.) Franco) par Laccaria laccatasouche S238. France: University of Nancy 1; 1992.
  • [9]Frey-Klett P, Pierrat JC, Garbaye J: Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 1997, 63:139-144.
  • [10]Coombs JT, Franco CMM: Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 2003, 69:5603-5608.
  • [11]Schrey SD, Tarkka MT: Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek Int JGen Mol Microbiol 2008, 94:11-19.
  • [12]Emmert EAB, Handelsman J: Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 1999, 171:1-9.
  • [13]Huddleston AS, Cresswell N, Neves MCP, Beringer JE, Baumberg S, Thomas DI, Wellington EMH: Molecular detection of streptomycin-producing streptomycetes in Brazilian soils. Appl Environ Microbiol 1997, 63:1288-1297.
  • [14]Gupte M, Kulkarni P, Ganguli BN: Antifungal antibiotics. Appl Microbiol Biotechnol 2002, 58:46-57.
  • [15]Poole EJ, Bending GD, Whipps JM, Read DJ: Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 2001, 151:743-751.
  • [16]Ames RN: Mycorrhiza development in onion in repsonse to inoculation with chitin-decomposing actinomycetes. New Phytol 1989, 112:423-427.
  • [17]Abdel-Fattah GM, Mohamedin AH: Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 2000, 32:401-409.
  • [18]Maier A, Riedlinger J, Fiedler H-P, Hampp R: Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol Prog 2004, 3:129-136.
  • [19]Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT: Interaction with mycorrhiza helper bacterium Streptomyces sp AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 2007, 52:77-85.
  • [20]Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT: Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 2005, 168:205-216.
  • [21]Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT: Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 2007, 174:892-903.
  • [22]Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P: The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 2007, 175:743-755.
  • [23]Tarkka MT, Herrmann S, Wubet T, Feldhahn L, Recht S, Kurth F, Mailänder S, Bönn M, Neef M, Angay O, et al.: OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytol 2013, 199:529-540.
  • [24]Richard F, Millot S, Gardes M, Selosse MA: Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 2005, 166:1011-1023.
  • [25]Herrmann S, Buscot F: Cross talks at the morphogenetic, physiological and gene regulation levels between the mycobiont Piloderma croceum and oak microcuttings (Quercus robur) during formation of ectomycorrhizas. Phytochemistry 2007, 68:52-67.
  • [26]Smith CJ, Osborn AM: Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 2009, 67:6-20.
  • [27]Landeweert R, Veenman C, Kuyper TW, Fritze H, Wernars K, Smit E: Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 2003, 45:283-292.
  • [28]Kennedy PG, Bergemann SE, Hortal S, Bruns TD: Determining the outcome of field-based competition between two Rhizopogon species using real-time PCR. Mol Ecol 2007, 16:881-890.
  • [29]Herrera ML, Vallor AC, Gelfond JA, Patterson TF, Wickes BL: Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus. J Clin Microbiol 2009, 47:1325-1332.
  • [30]Raidl S, Bonfigli R, Agerer R: Calibration of quantitative real-time TaqMan PCR by correlation with hyphal biomass and ITS copies in mycelia of Piloderma croceum. Plant Biol 2005, 7:713-717.
  • [31]Schubert R, Raidl S, Funk R, Bahnweg G, Muller-Starck G, Agerer R: Quantitative detection of agar-cultivated and rhizotron-grown Piloderma croceum Erikss. & Hjortst. by ITS1-based fluorescent PCR. Mycorrhiza 2003, 13:159-165.
  • [32]Hain T, WardRainey N, Kroppenstedt RM, Stackebrandt E, Rainey FA: Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers. Int J Syst Bacteriol 1997, 47:202-206.
  • [33]Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H: The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 2010, 34:171-198.
  • [34]Pukkila PJ, Skrzynia C: Frequent changes in the number of reiterated ribosomal-RNA genes throughout the life-cycle of the basidiomycete Coprinus cinereus. Genetics 1993, 133:203-211.
  • [35]Lindner DL, Banik MT: Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 2011, 103:731-740.
  • [36]de Boer W, Folman LB, Summerbell RC, Boddy L: Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 2005, 29:795-811.
  • [37]Tuason MMS, Arocena JM: Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Appl Environ Microbiol 2009, 75:7079-7085.
  • [38]Nehls U, Gohringer F, Wittulsky S, Dietz S: Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 2010, 12:292-301.
  • [39]Ramstedt M, Martin F, Soderhall K: Mannitol metabolism in the ectomycorrhizal basidiomycete Piloderma croceum during glucose utilization. A 13C NMR study. Agric Ecosyst Environ 1990, 28:409-414.
  • [40]Schlatter DC, Samac DA, Tesfaye M, Kinkel LL: Rapid and specific method for evaluating Streptomyces competitive dynamics in complex soil communities. Appl Environ Microbiol 2010, 76:2009-2012.
  • [41]Nodwell JR: Novel links between antibiotic resistance and antibiotic production. J Bacteriol 2007, 189:3683-3685.
  • [42]Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A: Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 2011, 75:583.
  • [43]Schrey SD, Erkenbrack E, Früh E, Fengler S, Hommel K, Horlacher N, Schulz D, Ecke M, Kulik A, Fiedler H-P, et al.: Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes. BMC Microbiol 2012., 12
  • [44]Berg G, Smalla K: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 2009, 68:1-13.
  • [45]Dennis PG, Miller AJ, Hirsch PR: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 2010, 72:313-327.
  • [46]Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR: Microbial products trigger amino acid exudation from plant roots. Plant Physiol 2004, 136:2887-2894.
  • [47]Herrmann S, Oelmuller R, Buscot F: Manipulation of the onset of ectomycorrhiza formation by indole-3-acetic acid, activated charcoal or relative humidity in the association between oak microcuttings and Piloderma croceum: influence on plant development and photosynthesis. J Plant Physiol 2004, 161:509-517.
  • [48]Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M: Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. Isme J 2009, 3:675-684.
  • [49]Shirling EB, Gottlieb D: Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966, 16:313-340.
  • [50]Fulton TM, Chunwongse J, Tanksley SD: Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 1995, 13:207-209.
  • [51]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  文献评价指标  
  下载次数:101次 浏览次数:35次