期刊论文详细信息
BMC Gastroenterology
Western diet-induced hepatic steatosis and alterations in the liver transcriptome in adult Brown-Norway rats
R. Scott Rector3  Frank W. Booth1  Heather J. Leidy7  Charles E. Wiedmeyer6  John C. Hofheins2  Christopher M. Lockwood4  Clayton L. Cruthirds2  Anna E. Krieger2  Conan Zhu2  Alexander J. Heese2  Ryan G. Toedebush2  C. Brooks Mobley8  Michael D. Roberts5 
[1] Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA;Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA;Department of Medicine-Gastroenterology and Hepatology, University of Missouri, Columbia, MO, USA;4Life Research, Sandy, UT, USA;Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, USA;Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA;Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65212, MO, USA;School of Kinesiology, Auburn University, Auburn, AL, USA
关键词: RNA-seq;    Inflammation;    Fatty liver;    Sucrose;    High-fat diet;   
Others  :  1234294
DOI  :  10.1186/s12876-015-0382-3
 received in 2015-07-07, accepted in 2015-10-21,  发布年份 2015
PDF
【 摘 要 】

Background

The purpose of this study was to investigate the effects of sub-chronic high fat, high sucrose diet (also termed ‘Westernized diet’ or WD) feeding on the liver transcriptome during early nonalcoholic fatty liver disease (NAFLD) development.

Methods

Brown Norway male rats (9 months of age) were randomly assigned to receive ad libitum access to a control (CTL; 14 % kcal fat, 1.2 % sucrose by weight) diet or WD (42 % kcal from fat, 34 % sucrose by weight) for 6 weeks.

Results

Six weeks of WD feeding caused hepatic steatosis development as evidenced by the 2.25-fold increase in liver triacylglycerol content, but did not induce advanced liver disease (i.e., no overt inflammation or fibrosis) in adult Brown Norway rats. RNA deep sequencing (RNA-seq) revealed that 94 transcripts were altered in liver by WD feeding (46 up-, 48 down-regulated, FDR < 0.05). Specifically, the top differentially regulated gene network by WD feeding was ‘Lipid metabolism, small molecular biochemistry, vitamin and mineral metabolism’ (Ingenuity Pathway Analysis (IPA) score 61). The top-regulated canonical signaling pathway in WD-fed rats was the ‘Superpathway of cholesterol biosynthesis’ (10/29 genes regulated, p = 1.68E-17), which coincides with a tendency for serum cholesterol levels to increase in WD-fed rats (p = 0.09). Remarkably, liver stearoyl-CoA desaturase (Scd) mRNA expression was by far the most highly-induced transcript in WD-fed rats (approximately 30-fold, FDR = 0.01) which supports previous literature underscoring this gene as a crucial target during NAFLD development.

Conclusions

In summary, sub-chronic WD feeding appears to increase hepatic steatosis development over a 6-week period but only induces select inflammation-related liver transcripts, mostly acute phase response genes. These findings continue to outline the early stages of NAFLD development prior to overt liver inflammation and advanced liver disease.

【 授权许可】

   
2015 Roberts et al.

【 预 览 】
附件列表
Files Size Format View
20151129011526381.pdf 1399KB PDF download
Fig. 3. 69KB Image download
Fig. 2. 96KB Image download
Fig. 1. 53KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al.: Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004, 40(6):1387-95.
  • [2]Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F: Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med 2000, 132(2):112-7.
  • [3]Rector RS, Thyfault JP, Wei Y, Ibdah JA: Non-alcoholic fatty liver disease and the metabolic syndrome: an update. World J Gastroenterol 2008, 14(2):185-92.
  • [4]Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, et al.: High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 2013, 58(5):1632-43.
  • [5]Almon RR, DuBois DC, Lai W, Xue B, Nie J, Jusko WJ: Gene expression analysis of hepatic roles in cause and development of diabetes in Goto-Kakizaki rats. J Endocrinol 2009, 200(3):331-46.
  • [6]Kim S, Sohn I, Ahn JI, Lee KH, Lee YS, Lee YS: Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 2004, 340(1):99-109.
  • [7]Kim S, Sohn I, Lee YS, Lee YS: Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J Nutr 2005, 135(1):33-41.
  • [8]Yang RL, Li W, Shi YH, Le GW: Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis. Nutrition 2008, 24(6):582-8.
  • [9]Kim EJ, Kim E, Kwon EY, Jang HS, Hur CG, Choi MS: Network analysis of hepatic genes responded to high-fat diet in C57BL/6 J mice: nutrigenomics data mining from recent research findings. J Med Food 2010, 13(4):743-56.
  • [10]Mobley CB, Toedebusch RG, Lockwood CM, Heese AJ, Zhu C, Krieger AE, et al.: Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-alpha expression and protein carbonylation in Western diet feeding in rats. Nutr. Metab 2014, 11:19. BioMed Central Full Text
  • [11]VanSaun MN, Lee IK, Washington MK, Matrisian L, Gorden DL: High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model. Am J Pathol 2009, 175(1):355-64.
  • [12]Li ZZ, Berk M, McIntyre TM, Feldstein AE: Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 2009, 284(9):5637-44.
  • [13]Rector RS, Thyfault JP, Morris RT, Laye MJ, Borengasser SJ, Booth FW, et al.: Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol 2008, 294(3):G619-26.
  • [14]Rustemeyer SM, Lamberson WR, Ledoux DR, Wells K, Austin KJ, Cammack KM: Effects of dietary aflatoxin on the hepatic expression of apoptosis genes in growing barrows. J Anim Sci 2011, 89(4):916-25.
  • [15]Lu C, Kumar PA, Sun J, Aggarwal A, Fan Y, Sperling MA, et al.: Targeted deletion of growth hormone (GH) receptor in macrophage reveals novel osteopontin-mediated effects of GH on glucose homeostasis and insulin sensitivity in diet-induced obesity. J Biol Chem 2013, 288(22):15725-35.
  • [16]Stanton MC, Chen SC, Jackson JV, Rojas-Triana A, Kinsley D, Cui L, et al.: Inflammatory Signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm 2011, 8:8. BioMed Central Full Text
  • [17]Morgan K, Uyuni A, Nandgiri G, Mao L, Castaneda L, Kathirvel E, et al.: Altered expression of transcription factors and genes regulating lipogenesis in liver and adipose tissue of mice with high fat diet-induced obesity and nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2008, 20(9):843-54.
  • [18]Syn WK, Yang L, Chiang DJ, Qian Y, Jung Y, Karaca G, et al.: Genetic differences in oxidative stress and inflammatory responses to diet-induced obesity do not alter liver fibrosis in mice. Liver Int 2009, 29(8):1262-72.
  • [19]Kang M, Li S, Zhong D, Yang Z, Li P: [Hepatocyte apoptosis and mitochondrial permeability transition pore opening in rats with nonalcoholic fatty liver]. Nan Fang Yi Ke Da Xue Xue Bao 2013, 33(7):1062-6.
  • [20]Wang Y, Ausman LM, Russell RM, Greenberg AS, Wang XD: Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun NH2-terminal kinase activation and elevated proapoptotic Bax. J Nutr 2008, 138(10):1866-71.
  • [21]Peter A, Cegan A, Wagner S, Elcnerova M, Konigsrainer A, Konigsrainer I, et al.: Relationships between hepatic stearoyl-CoA desaturase-1 activity and mRNA expression with liver fat content in humans. Am J Physiol Endocrinol Metab 2011, 300(2):E321-6.
  • [22]Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA, et al.: Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 2002, 297(5579):240-3.
  • [23]Dobrzyn P, Dobrzyn A, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, et al.: Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci U S A 2004, 101(17):6409-14.
  • [24]Miyazaki M, Sampath H, Liu X, Flowers MT, Chu K, Dobrzyn A, et al.: Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun 2009, 380(4):818-22.
  • [25]Beppu F, Hosokawa M, Yim MJ, Shinoda T, Miyashita K: Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A(y) mice. Lipids 2013, 48(5):449-55.
  • [26]Xu H, Wilcox D, Nguyen P, Voorbach M, Smith H, Brodjian S, et al.: Hepatic knockdown of stearoyl-CoA desaturase 1 via RNA interference in obese mice decreases lipid content and changes fatty acid composition. Front Biosci 2007, 12:3781-94.
  • [27]Christianson JL, Nicoloro S, Straubhaar J, Czech MP: Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells. J Biol Chem 2008, 283(5):2906-16.
  • [28]Wang H, Zhao Y, Bradbury JA, Graves JP, Foley J, Blaisdell JA, et al.: Cloning, expression, and characterization of three new mouse cytochrome p450 enzymes and partial characterization of their fatty acid oxidation activities. Mol Pharmacol 2004, 65(5):1148-58.
  • [29]Collison KS, Maqbool Z, Saleh SM, Inglis A, Makhoul NJ, Bakheet R, et al.: Effect of dietary monosodium glutamate on trans fat-induced nonalcoholic fatty liver disease. J Lipid Res 2009, 50(8):1521-37.
  • [30]Bennati AM, Castelli M, Della Fazia MA, Beccari T, Caruso D, Servillo G, et al.: Sterol dependent regulation of human TM7SF2 gene expression: role of the encoded 3beta-hydroxysterol Delta14-reductase in human cholesterol biosynthesis. Biochim Biophys Acta 2006, 1761(7):677-85.
  • [31]Charlesworth JC, Peralta JM, Drigalenko E, Goring HH, Almasy L, Dyer TD, et al.: Toward the identification of causal genes in complex diseases: a gene-centric joint test of significance combining genomic and transcriptomic data. BMC Proc 2009, 3 Suppl 7:S92. BioMed Central Full Text
  • [32]Ballestri S, Day CP, Daly AK: Polymorphism in the farnesyl diphosphate farnesyl transferase 1 gene and nonalcoholic fatty liver disease severity. Gastroenterology 2011, 140(5):1694-5.
  • [33]Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, et al.: MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A 2014, 111(40):14518-23.
  • [34]Takaishi K, Duplomb L, Wang MY, Li J, Unger RH: Hepatic insig-1 or −2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci U S A 2004, 101(18):7106-11.
  • [35]Akram ON, Bernier A, Petrides F, Wong G, Lambert G: Beyond LDL cholesterol, a new role for PCSK9. Arterioscler Thromb Vasc Biol 2010, 30(7):1279-81.
  • [36]Wang Q, Jiang L, Wang J, Li S, Yu Y, You J, et al.: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology 2009, 49(4):1166-75.
  • [37]Ceciliani F, Giordano A, Spagnolo V: The systemic reaction during inflammation: the acute-phase proteins. Protein Pept Lett 2002, 9(3):211-23.
  • [38]Koruk M, Taysi S, Savas MC, Yilmaz O, Akcay F, Karakok M: Serum levels of acute phase proteins in patients with nonalcoholic steatohepatitis. Turk J Gastroenterol 2003, 14(1):12-7.
  • [39]Bell LN, Vuppalanchi R, Watkins PB, Bonkovsky HL, Serrano J, Fontana RJ, et al.: Serum proteomic profiling in patients with drug-induced liver injury. Aliment Pharmacol Ther 2012, 35(5):600-12.
  • [40]Radonjic M, de Haan JR, van Erk MJ, van Dijk KW, van den Berg SA, de Groot PJ, et al.: Genome-wide mRNA expression analysis of hepatic adaptation to high-fat diets reveals switch from an inflammatory to steatotic transcriptional program. PLoS One 2009, 4(8):e6646.
  • [41]Zaldivar MM, Pauels K, von Hundelshausen P, Berres ML, Schmitz P, Bornemann J, et al.: CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis. Hepatology 2010, 51(4):1345-53.
  • [42]Dominguez M, Miquel R, Colmenero J, Moreno M, Garcia-Pagan JC, Bosch J, et al.: Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 2009, 136(5):1639-50.
  • [43]Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al.: High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci 2006, 79(11):1100-7.
  • [44]Padidar S, Farquharson AJ, Williams LM, Kelaiditi E, Hoggard N, Arthur JR, et al.: Leptin up-regulates pro-inflammatory cytokines in discrete cells within mouse colon. J Cell Physiol 2011, 226(8):2123-30.
  • [45]Rodrigues DF, Henriques MC, Oliveira MC, Menezes-Garcia Z, Marques PE, Souza Dda G, et al.: Acute intake of a high-fructose diet alters the balance of adipokine concentrations and induces neutrophil influx in the liver. J Nutr Biochem 2014, 25(4):388-94.
  • [46]Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, et al.: Leptin regulates proinflammatory immune responses. FASEB J 1998, 12(1):57-65.
  • [47]Leclercq IA, Farrell GC, Schriemer R, Robertson GR: Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol 2002, 37(2):206-13.
  • [48]Trak-Smayra V, Paradis V, Massart J, Nasser S, Jebara V, Fromenty B: Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol 2011, 92(6):413-21.
  • [49]Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Lutjohann D, et al.: Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 2008, 48(2):474-86.
  • [50]Sharma MR, Polavarapu R, Roseman D, Patel V, Eaton E, Kishor PB, et al.: Transcriptional networks in a rat model for nonalcoholic fatty liver disease: a microarray analysis. Exp Mol Pathol 2006, 81(3):202-10.
  • [51]Kirpich IA, Gobejishvili LN, Bon Homme M, Waigel S, Cave M, Arteel G, et al.: Integrated hepatic transcriptome and proteome analysis of mice with high-fat diet-induced nonalcoholic fatty liver disease. J Nutr Biochem 2011, 22(1):38-45.
  文献评价指标  
  下载次数:18次 浏览次数:4次