期刊论文详细信息
BMC Microbiology
Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti
Nikhat Parveen2  Salvatore AE Marras1  Kamfai Chan2 
[1] Public Health Research Institute, 225 Warren Street, Newark, NJ 07103-3535, USA;Department of Microbiology and Molecular Genetics, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103-3535, USA
关键词: Anaplasmosis;    Babesiosis;    Lyme disease;    Multiplex assay;    Molecular beacons;    Real-time PCR;    Tick-borne emerging pathogens;    Babesia microti;    Anaplasma phagocytophilum;    Borrelia burgdorferi;   
Others  :  1142289
DOI  :  10.1186/1471-2180-13-295
 received in 2013-09-06, accepted in 2013-12-12,  发布年份 2013
PDF
【 摘 要 】

Background

The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases.

Results

In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples.

Conclusion

Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner.

【 授权许可】

   
2013 Chan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328024122238.pdf 737KB PDF download
Figure 8. 29KB Image download
Figure 7. 36KB Image download
Figure 6. 32KB Image download
Figure 5. 79KB Image download
Figure 4. 27KB Image download
Figure 3. 28KB Image download
Figure 2. 27KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Dantas-Torres F, Chomel BB, Otranto D: Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol 2012, 28(10):437-446.
  • [2]Heyman P, Cochez C, Hofhuis A, van der Giessen J, Sprong H, Porter SR, Losson B, Saegerman C, Donoso-Mantke O, Niedrig M, et al.: A clear and present danger: tick-borne diseases in Europe. Expert Rev Anti Infect Ther 2010, 8(1):33-50.
  • [3]Reis C, Cote M, Paul RE, Bonnet S: Questing ticks in Suburban Forest are infected by at least six tick-borne pathogens. Vector Borne Zoonotic Dis 2010, 11(7):07-916.
  • [4]Hildebrandt A, Fritzsch J, Franke J, Sachse S, Dorn W, Straube E: Co-circulation of emerging tick-borne pathogens in Middle Germany. Vector Borne Zoonotic Dis 2011, 11(5):533-537.
  • [5]Franke J, Meier F, Moldenhauer A, Straube E, Dorn W, Hildebrandt A: Established and emerging pathogens in Ixodes ricinus ticks collected from birds on a conservation island in the Baltic Sea. Med Vet Entomol 2010, 24(4):425-432.
  • [6]Tokarz R, Jain K, Bennett A, Briese T, Lipkin WI: Assessment of polymicrobial infections in ticks in New York state. Vector Borne Zoonotic Dis 2010, 10(3):217-221.
  • [7]Ginsberg HS: Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records. Exp Appl Acarol 2008, 46(1–4):29-41.
  • [8]Rodgers SE, Mather TN: Human Babesia microti incidence and Ixodes scapularis distribution, Rhode Island, 1998–2004. Emerg Infect Dis 2007, 13(4):633-635.
  • [9]Belongia EA: Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector Borne Zoonotic Dis 2002, 2(4):265-273.
  • [10]Vannier E, Gewurz BE, Krause PJ: Human babesiosis. Infect Dis Clin North Am 2008, 22(3):469-488. viii-ix
  • [11]Magnarelli LA, Williams SC, Fikrig E: Seasonal prevalence of serum antibodies to whole cell and recombinant antigens of Borrelia burgdorferi and Anaplasma phagocytophilum in white-tailed deer in Connecticut. J Wildl Dis 2010, 46(3):781-790.
  • [12]Telford SR 3rd, Dawson JE, Katavolos P, Warner CK, Kolbert CP, Persing DH: Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc Natl Acad Sci USA 1996, 93(12):6209-6214.
  • [13]Levin ML, Nicholson WL, Massung RF, Sumner JW, Fish D: Comparison of the reservoir competence of medium-sized mammals and Peromyscus leucopus for Anaplasma phagocytophilum in Connecticut. Vector Borne Zoonotic Dis 2002, 2(3):125-136.
  • [14]Rikihisa Y: Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010, 8(5):328-339.
  • [15]Mazepa AW, Kidd LB, Young KM, Trepanier LA: Clinical presentation of 26 Anaplasma phagocytophilum-seropositive dogs residing in an endemic area. J Am Anim Hosp Assoc 2010, 46(6):405-412.
  • [16]Goethert HK, Lubelcyzk C, LaCombe E, Holman M, Rand P, Smith RP Jr, Telford SR 3rd: Enzootic Babesia microti in Maine. J Parasitol 2003, 89(5):1069-1071.
  • [17]Krause PJ, McKay K, Gadbaw J, Christianson D, Closter L, Lepore T, Telford SR 3rd, Sikand V, Ryan R, Persing D, et al.: Increasing health burden of human babesiosis in endemic sites. Am J Trop Med Hyg 2003, 68(4):431-436.
  • [18]Herwaldt BL, McGovern PC, Gerwel MP, Easton RM, MacGregor RR: Endemic babesiosis in another eastern state: New Jersey. Emerg Infect Dis 2003, 9(2):184-188.
  • [19]Leiby DA, Chung AP, Cable RG, Trouern-Trend J, McCullough J, Homer MJ, Reynolds LD, Houghton RL, Lodes MJ, Persing DH: Relationship between tick bites and the seroprevalence of Babesia microti and Anaplasma phagocytophila (previously Ehrlichia sp.) in blood donors. Transfusion 2002, 42(12):1585-1591.
  • [20]Sweeney CJ, Ghassemi M, Agger WA, Persing DH: Coinfection with Babesia microti and Borrelia burgdorferi in a western Wisconsin resident. Mayo Clin Proc 1998, 73(4):338-341.
  • [21]Mitchell PD, Reed KD, Hofkes JM: Immunoserologic evidence of coinfection with Borrelia burgdorferi, Babesia microti, and human granulocytic Ehrlichia species in residents of Wisconsin and Minnesota. J Clin Microbiol 1996, 34(3):724-727.
  • [22]Chandrashekar R, Mainville CA, Beall MJ, O'Connor T, Eberts MD, Alleman AR, Gaunt SD, Breitschwerdt EB: Performance of a commercially available in-clinic ELISA for the detection of antibodies against Anaplasma phagocytophilum, Ehrlichia canis, and Borrelia burgdorferi and Dirofilaria immitis antigen in dogs. Am J Vet Res 2010, 71(12):1443-1450.
  • [23]Ravnik U, Tozon N, Smrdel KS, Zupanc TA: Anaplasmosis in dogs: the relation of haematological, biochemical and clinical alterations to antibody titre and PCR confirmed infection. Vet Microbiol 2011, 149(1–2):172-176.
  • [24]Herwaldt BL, Linden JV, Bosserman E, Young C, Olkowska D, Wilson M: Transfusion-associated babesiosis in the United States: a description of cases. Ann Intern Med 2011, 155(8):509-519.
  • [25]Hatcher JC, Greenberg PD, Antique J, Jimenez-Lucho VE: Severe babesiosis in Long Island: review of 34 cases and their complications. Clin Infect Dis 2001, 32(8):1117-1125.
  • [26]Summary of notifiable diseases --- United States, 2009 MMWR Morb Mortal Wkly Rep 2011, 58(53):1-100.
  • [27]Wormser GP, Aguero-Rosenfeld ME, Cox ME, Nowakowski J, Nadelman RB, Holmgren D, McKenna D, Bittker S, Zentmaier L, Cooper D, et al.: Differences and similarities between culture-confirmed human granulocytic anaplasmosis and early Lyme disease. J Clin Microbiol 2013, 51(3):954-958.
  • [28]Chmielewska-Badora J, Moniuszko A, Zukiewicz-Sobczak W, Zwolinski J, Piatek J, Pancewicz S: Serological survey in persons occupationally exposed to tick-borne pathogens in cases of co-infections with Borrelia burgdorferi, Anaplasma phagocytophilum, Bartonella spp. and Babesia microti. Ann Agric Environ Med 2012, 19(2):271-274.
  • [29]Lommano E, Bertaiola L, Dupasquier C, Gern L: Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Appl Environ Microbiol 2012, 78(13):4606-4612.
  • [30]Franke J, Hildebrandt A, Meier F, Straube E, Dorn W: Prevalence of Lyme disease agents and several emerging pathogens in questing ticks from the German Baltic coast. J Med Entomol 2011, 48(2):441-444.
  • [31]Ewing SA, Dawson JE, Kocan AA, Barker RW, Warner CK, Panciera RJ, Fox JC, Kocan KM, Blouin EF: Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acari: Ixodidae). J Med Entomol 1995, 32(3):368-374.
  • [32]Aguero-Rosenfeld ME, Donnarumma L, Zentmaier L, Jacob J, Frey M, Noto R, Carbonaro CA, Wormser GP: Seroprevalence of antibodies that react with Anaplasma phagocytophila, the agent of human granulocytic ehrlichiosis, in different populations in Westchester County, New York. J Med Entomol 2002, 40(7):2612-2615.
  • [33]Bakken LL: Role of experience and context in learning to diagnose Lyme disease. J Contin Educ Health Prof 2002, 22(3):131-141.
  • [34]Bakken JS, Dumler S: Human granulocytic anaplasmosis. Infect Dis Clin North Am 2008, 22(3):433-448. viii
  • [35]Wright WF, Riedel DJ, Talwani R, Gilliam BL: Diagnosis and management of Lyme disease. Am Fam Physician 2012, 85(11):1086-1093.
  • [36]Hernandez-Novoa B, Orduna A, Bratos MA, Eiros JM, Fernandez JM, Gutierrez MP, Alonso PA, Mantecon MA, Almaraz A, Oteo JA, et al.: Utility of a commercial immunoblot kit (BAG-Borrelia blot) in the diagnosis of the preliminary stages of Lyme disease. Diagn Microbiol Infect Dis 2003, 47(1):321-329.
  • [37]Ekerfelt C, Ernerudh J, Forsberg P, Jonsson AL, Vrethem M, Arlehag L, Forsum U: Lyme borreliosis in Sweden–diagnostic performance of five commercial Borrelia serology kits using sera from well-defined patient groups. APMIS 2004, 112(1):74-78.
  • [38]Mogilyansky E, Loa CC, Adelson ME, Mordechai E, Tilton RC: Comparison of Western immunoblotting and the C6 Lyme antibody test for laboratory detection of Lyme disease. Clin Diagn Lab Immunol 2004, 11(5):924-929.
  • [39]Aguero-Rosenfeld ME, Wang G, Schwartz I, Wormser GP: Diagnosis of lyme borreliosis. Clin Microbiol Rev 2005, 18(3):484-509.
  • [40]Wilske B, Fingerle V, Schulte-Spechtel U: Microbiological and serological diagnosis of Lyme borreliosis. FEMS Immunol Med Microbiol 2007, 49(1):13-21.
  • [41]Joss AW, Evans R, Mavin S, Chatterton J, Ho-Yen DO: Development of real time PCR to detect Toxoplasma gondii and Borrelia burgdorferi infections in postal samples. J Clin Pathol 2008, 61(2):221-224.
  • [42]Leiby DA: Transfusion-transmitted Babesia spp.: bull's-eye on Babesia microti. Clin Microbiol Rev 2011, 24(1):14-28.
  • [43]Herwaldt BL, Neitzel DF, Gorlin JB, Jensen KA, Perry EH, Peglow WR, Slemenda SB, Won KY, Nace EK, Pieniazek NJ, et al.: Transmission of Babesia microti in Minnesota through four blood donations from the same donor over a 6-month period. Transfusion 2002, 42(9):1154-1158.
  • [44]Joseph JT, Purtill K, Wong SJ, Munoz J, Teal A, Madison-Antenucci S, Horowitz HW, Aguero-Rosenfeld ME, Moore JM, Abramowsky C, et al.: Vertical transmission of Babesia microti, United States. Emerg Infect Dis 2012, 18(8):1318-1321.
  • [45]Krause PJ: Babesiosis diagnosis and treatment. Vector Borne Zoonotic Dis 2003, 3(1):45-51.
  • [46]Persing DH, Mathiesen D, Marshall WF, Telford SR, Spielman A, Thomford JW, Conrad PA: Detection of Babesia microti by polymerase chain reaction. J Clin Microbiol 1992, 30(8):2097-2103.
  • [47]Thomas RJ, Dumler JS, Carlyon JA: Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Rev Anti Infect Ther 2009, 7(6):709-722.
  • [48]Bakken JS, Dumler JS: Clinical diagnosis and treatment of human granulocytotropic anaplasmosis. Ann N Y Acad Sci 2006, 1078:236-247.
  • [49]Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, Grab DJ, Bakken JS: Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 2005, 11(12):1828-1834.
  • [50]Kurreck J: Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003, 270(8):1628-1644.
  • [51]El-Hajj HH, Marras SA, Tyagi S, Shashkina E, Kamboj M, Kiehn TE, Glickman MS, Kramer FR, Alland D: Use of sloppy molecular beacon probes for identification of mycobacterial species. J Clin Microbiol 2009, 47(4):1190-1198.
  • [52]Banada PP, Sivasubramani SK, Blakemore R, Boehme C, Perkins MD, Fennelly K, Alland D: Containment of bioaerosol infection risk by the Xpert MTB/RIF assay and its applicability to point-of-care settings. J Clin Microbiol 2010, 48(10):3551-3557.
  • [53]Teal AE, Habura A, Ennis J, Keithly JS, Madison-Antenucci S: A new real-time PCR assay for improved detection of the parasite Babesia microti. J Clin Microbiol 2012, 50(3):903-908.
  • [54]Marras SA, Kramer FR, Tyagi S: Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res 2002, 30(21):e122.
  • [55]Tyagi S, Bratu DP, Kramer FR: Multicolor molecular beacons for allele discrimination. Nat Biotechnol 1998, 16(1):49-53.
  • [56]Marras SA, Kramer FR, Tyagi S: Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal 1999, 14(5–6):151-156.
  • [57]Mhlanga MM, Malmberg L: Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods 2001, 25(4):463-471.
  • [58]Bonnet G, Tyagi S, Libchaber A, Kramer FR: Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci USA 1999, 96(11):6171-6176.
  • [59]Petersen K, Vogel U, Rockenbauer E, Nielsen KV, Kolvraa S, Bolund L, Nexo B: Short PNA molecular beacons for real-time PCR allelic discrimination of single nucleotide polymorphisms. Mol Cell Probes 2004, 18(2):117-122.
  • [60]Tapp I, Malmberg L, Rennel E, Wik M, Syvanen AC: Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5'-nuclease TaqMan assay and Molecular Beacon probes. Biotechniques 2000, 28(4):732-738.
  • [61]Saidac DS, Marras SA, Parveen N: Detection and quantification of Lyme spirochetes using sensitive and specific molecular beacon probes. BMC Microbiol 2009, 9(1):43-52. BioMed Central Full Text
  • [62]Parveen N, Leong JM: Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2000, 35(5):1220-1234.
  • [63]Morrison TB, Ma Y, Weis JH, Weis JJ: Rapid and sensitive quantification of Borrelia burgdorferi-infected mouse tissues by continuous fluorescent monitoring of PCR. J Clin Microbiol 1999, 37(4):987-992.
  • [64]Vet JA, Marras SA: Design and optimization of molecular beacon real-time polymerase chain reaction assays. Methods Mol Biol 2005, 288:273-290.
  • [65]Cornillot E, Hadj-Kaddour K, Dassouli A, Noel B, Ranwez V, Vacherie B, Augagneur Y, Bres V, Duclos A, Randazzo S, et al.: Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti. Nucleic Acids Res 2012, 40(18):9102-9114.
  • [66]Huang B, Troese MJ, Ye S, Sims JT, Galloway NL, Borjesson DL, Carlyon JA: Anaplasma phagocytophilum APH_1387 is expressed throughout bacterial intracellular development and localizes to the pathogen-occupied vacuolar membrane. Infect Immun 2010, 78(5):1864-1873.
  • [67]Coumou J, van der Poll T, Speelman P, Hovius JW: Tired of Lyme borreliosis. Lyme borreliosis in the Netherlands. Neth J Med 2011, 69(3):101-111.
  • [68]Stanek G, Fingerle V, Hunfeld KP, Jaulhac B, Kaiser R, Krause A, Kristoferitsch W, O'Connell S, Ornstein K, Strle F, et al.: Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect 2011, 17(1):69-79.
  • [69]Adams DA, Gallagher KM, Jajosky RA, Kriseman J, Sharp P, Anderson WJ, Aranas AE, Mayes M, Wodajo MS, Onweh DH, Abellera JP: Reports of nationally notifiable infectious diseases---United States, 2011. MMWR Morb Mortal Wkly Rep 2013, 60(53):1-117.
  • [70]Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA: Babesia: a world emerging. Infect Genet Evol 2012, 12(8):1788-1809.
  • [71]Johnson ST, Cable RG, Tonnetti L, Spencer B, Rios J, Leiby DA: Seroprevalence of Babesia microti in blood donors from Babesia-endemic areas of the northeastern United States: 2000 through 2007. Transfusion 2009, 49(12):2574-2582.
  • [72]Tonnetti L, Eder AF, Dy B, Kennedy J, Pisciotto P, Benjamin RJ, Leiby DA: Transfusion-transmitted Babesia microti identified through hemovigilance. Transfusion 2009, 49(12):2557-2563.
  • [73]Young C, Chawla A, Berardi V, Padbury J, Skowron G, Krause PJ: Preventing transfusion-transmitted babesiosis: preliminary experience of the first laboratory-based blood donor screening program. Transfusion 2012, 52(7):1523-1529.
  • [74]Cushing M, Shaz B: Transfusion-transmitted babesiosis: achieving successful mitigation while balancing cost and donor loss. Transfusion 2012, 52(7):1404-1407.
  • [75]Meng W, Yamazaki T, Nishida Y, Hanagata N: Nuclease-resistant immunostimulatory phosphodiester CpG oligodeoxynucleotides as human Toll-like receptor 9 agonists. BMC Biotechnol 2011, 11:88. BioMed Central Full Text
  • [76]Mutwiri GK, Nichani AK, Babiuk S, Babiuk LA: Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release 2004, 97(1):1-17.
  • [77]Monno R, Fumarola L, Mercadante G, Tzakis G, Battista M, Miragliotta G: Evaluation of a rapid test for the diagnosis of pneumococcal pneumonia. J Microbiol Methods 2013, 92(2):127-131.
  • [78]Tokarz R, Kapoor V, Samuel JE, Bouyer DH, Briese T, Lipkin WI: Detection of tick-borne pathogens by MassTag polymerase chain reaction. Vector Borne Zoonotic Dis 2009, 9(2):147-152.
  • [79]Liveris D, Schwartz I, McKenna D, Nowakowski J, Nadelman RB, DeMarco J, Iyer R, Cox ME, Holmgren D, Wormser GP: Quantitation of cell-associated borrelial DNA in the blood of Lyme disease patients with erythema migrans. Eur J Clin Microbiol Infect Dis 2012, 31(5):791-795.
  • [80]Eshoo MW, Crowder CC, Rebman AW, Rounds MA, Matthews HE, Picuri JM, Soloski MJ, Ecker DJ, Schutzer SE, Aucott JN: Direct molecular detection and genotyping of Borrelia burgdorferi from whole blood of patients with early Lyme disease. PLoS One 2012, 7(5):e36825.
  • [81]Horowitz HW, Aguero-Rosenfeld ME, Holmgren D, McKenna D, Schwartz I, Cox ME, Wormser GP: Lyme disease and human granulocytic anaplasmosis coinfection: impact of case definition on coinfection rates and illness severity. Clin Infect Dis 2013, 56(1):93-99.
  • [82]Dominguez SR, Briese T, Palacios G, Hui J, Villari J, Kapoor V, Tokarz R, Glode MP, Anderson MS, Robinson CC, et al.: Multiplex MassTag-PCR for respiratory pathogens in pediatric nasopharyngeal washes negative by conventional diagnostic testing shows a high prevalence of viruses belonging to a newly recognized rhinovirus clade. J Clin Virol 2008, 43(2):219-222.
  • [83]Ferdin J, Cerar T, Strle F, Ruzic-Sabljic E: Evaluation of real-time PCR targeting hbb gene for Borrelia species identification. J Microbiol Methods 2010, 82(2):115-119.
  • [84]Iyer R, Mukherjee P, Wang K, Simons J, Wormser GP, Schwartz I: Detection of Borrelia burgdorferi nucleic acids after antibiotic treatment does not confirm viability. J Clin Microbiol 2013, 51(3):857-862.
  • [85]Liveris D, Schwartz I, Bittker S, Cooper D, Iyer R, Cox ME, Wormser GP: Improving the yield of blood cultures from patients with early Lyme disease. J Clin Microbiol 2011, 49(6):2166-2168.
  • [86]Liveris D, Schwartz I, McKenna D, Nowakowski J, Nadelman R, Demarco J, Iyer R, Bittker S, Cooper D, Holmgren D, et al.: Comparison of five diagnostic modalities for direct detection of Borrelia burgdorferi in patients with early Lyme disease. Diagn Microbiol Infect Dis 2012, 73(3):243-245.
  • [87]Anderson JF, Armstrong PM: Prevalence and genetic characterization of Powassan virus strains infecting Ixodes scapularis in Connecticut. Am J Trop Med Hyg 2012, 87(4):754-759.
  • [88]Raval M, Singhal M, Guerrero D, Alonto A: Powassan virus infection: case series and literature review from a single institution. BMC Res Notes 2012, 5:594. BioMed Central Full Text
  • [89]Ytrehus B, Vainio K, Dudman SG, Gilray J, Willoughby K: Tick-borne encephalitis virus and louping-Ill virus may co-circulate in Southern Norway. Vector Borne Zoonotic Dis 2013, 13(10):762-768.
  文献评价指标  
  下载次数:85次 浏览次数:27次