期刊论文详细信息
BMC Microbiology
Comparison of CDC and sequence-based molecular typing of syphilis treponemes: tpr and arp loci are variable in multiple samples from the same patient
David Šmajs2  Hana Zákoucká4  Ivana Kuklová1  Vladana Woznicová3  Petra Pospíšilová2  Lenka Mikalová2 
[1] Department of Dermatology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic;Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic;Department of Medical Microbiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic;National Reference Laboratory for Diagnostics of Syphilis, The National Institute for Public Health, Prague, Czech Republic
关键词: tpr genes;    arp gene;    CDC typing;    Sequence-based typing;    Molecular typing;    Syphilis;    Treponema pallidum;   
Others  :  1143359
DOI  :  10.1186/1471-2180-13-178
 received in 2013-03-04, accepted in 2013-07-24,  发布年份 2013
PDF
【 摘 要 】

Background

Molecular typing of syphilis-causing strains provides important epidemiologic data. We tested whether identified molecular subtypes were identical in PCR-positive parallel samples taken from the same patient at a same time. We also tested whether subtype prevalence differs in skin and blood samples.

Results

Eighteen syphilis positive patients (showing both positive serology and PCR), with two PCR-typeable parallel samples taken at the same time, were tested with both CDC (Centers for Disease Control and Prevention) and sequence-based typing. Samples taken from 9 of 18 patients were completely typed for TP0136, TP0548, 23S rDNA, arp, and tpr loci. The CDC typing revealed 11 distinct genotypes while the sequence-based typing identified 6 genotypes. When results from molecular typing of TP0136, TP0548, and 23S rDNA were analyzed in samples taken from the same patient, no discrepancies in the identified genotypes were found; however, there were discrepancies in 11 of 18 patients (61.1%) samples relative to the arp and tpr loci. In addition to the above described typing, 127 PCR-positive swabs and whole blood samples were tested for individual genotype frequencies. The repetition number for the arp gene was lower in whole blood (WB) samples compared to swab samples. Similarly, the most common tpr RFLP type “d” was found to have lower occurrence rates in WB samples while type “e” had an increased occurrence in these samples.

Conclusions

Differences in the CDC subtypes identified in parallel samples indicated genetic instability of the arp and tpr loci and suggested limited applicability of the CDC typing system in epidemiological studies. Differences in treponemal genotypes detected in whole blood and swab samples suggested important differences between both compartments and/or differences in adherence of treponeme variants to human cells.

【 授权许可】

   
2013 Mikalová et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329052854636.pdf 217KB PDF download
【 参考文献 】
  • [1]Hay PE, Clarke JR, Strugnell RA, Taylor-Robinson D, Goldmeier D: Use of the polymerase chain reaction to detect DNA sequences specific to pathogenic treponemes in cerebrospinal fluid. FEMS Microbiol Lett 1990, 56:233-238.
  • [2]Burstain JM, Grimprel E, Lukehart SA, Norgard MV, Radolf JD: Sensitive detection of Treponema pallidum by using the polymerase chain reaction. J Clin Microbiol 1991, 29:62-69.
  • [3]Noordhoek GT, Wolters EC, De Jonge ME, Van Embden JD: Detection by polymerase chain reaction of Treponema pallidum DNA in cerebrospinal fluid from neurosyphilis patients before and after antibiotic treatment. J Clin Microbiol 1991, 29:1976-1984.
  • [4]Centurion-Lara A, Castro C, Shaffer JM, Van Voorhis WC, Marra CM, Lukehart SA: Detection of Treponema pallidum by a sensitive reverse transcriptase PCR. J Clin Microbiol 1997, 35:1348-1352.
  • [5]Liu H, Rodes B, Chen CY, Steiner B: New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol 2001, 39:1941-1946.
  • [6]Koek AG, Bruisten SM, Dierdorp M, Van Dam AP, Templeton K: Specific and sensitive diagnosis of syphilis using a real-time PCR for Treponema pallidum. Clin Microbiol Infect 2006, 12(12):1233-1236.
  • [7]Rajan MS, Pantelidis P, Tong CY, French GL, Graham EM, Stanford MR: Diagnosis of Treponema pallidum in vitreous samples using real time polymerase chain reaction. Br J Ophthalmol 2006, 90:647-648.
  • [8]Šmajs D, Matějková P, Woznicová V, Vališová Z: Diagnosis of syphilis by polymerase chain reaction and molecular typing of Treponema pallidum. Rev Med Microbiol 2006, 17:93-99.
  • [9]Heymans R, van der Helm JJ, De Vries HJ, Fennema HS, Coutinho RA, Bruisten SM: Clinical value of Treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol 2010, 48(2):497-502.
  • [10]Orle KA, Gates CA, Martin DH, Body BA, Weiss JB: Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. J Clin Microbiol 1996, 34:49-54.
  • [11]Scott LJ, Gunson RN, Carman WF, Winter AJ: A new multiplex real-time PCR test for HSV1/2 and syphilis: an evaluation of its impact in the laboratory and clinical setting. Sex Transm Infect 2010, 86(7):537-539.
  • [12]Heymans R, Kolader ME, van der Helm JJ, Coutinho RA, Bruisten SM: TprK gene regions are not suitable for epidemiological syphilis typing. Eur J Clin Microbiol Infect Dis 2009, 28(7):875-878.
  • [13]Flasarová M, Šmajs D, Matějková P, Woznicová V, Heroldová-Dvořáková M, Votava M: Molecular detection and subtyping of Treponema pallidum subsp. pallidum in clinical speciments. Epidemiol Mikrobiol Imunol 2006, 55(3):105-111.
  • [14]Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, Behets F, Rompalo A, Klausner JD, Yin YP, Mulcahy F, Golden MR, Centurion-Lara A, Lukehart SA: Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis 2010, 202(9):1380-1388.
  • [15]Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, Steiner B, Morse SA: Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis 1998, 25(8):408-414.
  • [16]Katz KA, Pillay A, Ahrens K, Kohn RP, Hermanstyne K, Bernstein KT, Ballard RC, Klausner JD: Molecular epidemiology of syphilis-San Francisco, 2004–2007. Sex Transm Dis 2010, 37:660-663.
  • [17]Flasarová M, Pospíšilová P, Mikalová L, Vališová Z, Dastychová E, Strnadel R, Kuklová I, Woznicová V, Zákoucká H, Šmajs D: Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm Venereol 2012, 92:669-674.
  • [18]Sutton MY, Liu H, Steiner B, Pillay A, Mickey T, Finelli L, Morse S, Markowitz LE, St Louis ME: Molecular subtyping of Treponema pallidum in an Arizona County with increasing syphilis morbidity: use of specimens from ulcers and blood. J Infect Dis 2001, 183(11):1601-1606.
  • [19]Pillay A, Liu H, Ebrahim S, Chen CY, Lai W, Fehler G, Ballard RC, Steiner B, Sturm AW, Morse SA: Molecular typing of Treponema pallidum in South Africa: cross-sectional study. J Clin Microbiol 2002, 40(1):256-258.
  • [20]Pope V, Fox K, Liu H, Marfin AA, Leone P, Seña AC, Chapin J, Fears MB, Markowitz L: Molecular subtyping of Treponema pallidum from North and South Carolina. J Clin Microbiol 2005, 43(8):3743-3746.
  • [21]Molepo J, Pillay A, Weber B, Morse SA, Hoosen AA: Molecular typing of Treponema pallidum strains from patients with neurosyphilis in Pretoria, South Africa. Sex Transm Infect 2007, 83(3):189-192.
  • [22]Florindo C, Reigado V, Gomes JP, Azevedo J, Santo I, Borrego MJ: Molecular typing of Treponema pallidum clinical strains from Lisbon, Portugal. J Clin Microbiol 2008, 46(11):3802-3803.
  • [23]Castro R, Prieto E, Aguas MJ, Manata MJ, Botas J, Pereira FM: Molecular subtyping of Treponema pallidum subsp. pallidum in Lisbon, Portugal. J Clin Microbiol 2009, 47:2510-2512.
  • [24]Cole MJ, Chisholm SA, Palmer HM, Wallace LA, Ison CA: Molecular epidemiology of syphilis in Scotland. Sex Transm Infect 2009, 85:447-451.
  • [25]Martin IE, Gu W, Yang Y, Tsang RSW: Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China. Clin Infect Dis 2009, 49(4):515-521.
  • [26]Cruz AR, Pillay A, Zuluaga AV, Ramirez LG, Duque JE, Aristizabal GE, Fiel-Gan MD, Jaramillo R, Trujillo R, Valencia C, Jagodzinski L, Cox DL, Radolf JD, Salazar JC: Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis 2010, 4(5):e690.
  • [27]Martin IE, Tsang RSW, Sutherland K, Anderson B, Rear R, Roy C, Yanow S, Fonseca K, White W, Kandola K, Kouadjo E, Singh AE: Molecular typing of Treponema pallidum strains in Western Canada: predominance of 14d subtypes. Sex Transm Dis 2010, 37:544-548.
  • [28]Peng RR, Wang AL, Li J, Tucker JD, Yin YP, Chen XS: Molecular typing of Treponema pallidum: a systematic review and meta-analysis. PLoS Negl Trop Dis 2011, 5(11):e1273.
  • [29]Tipple C, McMlure MO, Taylor GP: High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex Transm Infect 2011, 87(6):486-488.
  • [30]Azzato F, Ryan N, Fyfe J, Leslie DE: Molecular subtyping of Treponema pallidum during a local syphilis epidemic in men who have sex with men in Melbourne, Australia. J Clin Microbiol 2012, 50:1895-1899.
  • [31]Dai T, Li K, Lu H, Gu X, Wang Q, Zhou P: Molecular typing of Treponema pallidum: five-year surveillance in Shanghai, China. J Clin Microbiol 2012, 50(11):3674-3677.
  • [32]Müller EE, Paz-Bailey G, Lewis DA: Macrolide resistance testing and molecular subtyping of Treponema pallidum strains from southern Africa. Sex Transm Infect 2012, 88(6):470-474.
  • [33]Peng RR, Yin YP, Wei WH, Wang HC, Zhu BY, Liu QZ, Zheng HP, Zhang JP, Huang SJ, Chen XS: Molecular typing of Treponema pallidum causing early syphilis in China: a cross-sectional study. Sex Transm Dis 2012, 39(1):42-45.
  • [34]Wu H, Chang SY, Lee NY, Huang WC, Wu BR, Yang CJ, Liang SH, Lee CH, Ko WC, Lin HH, Chen YH, Liu WC, Su YC, Hsieh CY, Wu PY, Hung CC: Evaluation of macrolide resistance and enhanced molecular typing of Treponema pallidum in patients with syphilis in Taiwan: a prospective multicenter study. J Clin Microbiol 2012, 50(7):2299-2304.
  • [35]Liu H, Rodes B, George R, Steiner B: Molecular characterization and analysis of a gene encoding the acidic repeat protein (Arp) of Treponema pallidum. J Med Microbiol 2007, 56(Pt6):715-721.
  • [36]Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, Levert K, Wang D, Sutton M, Armelagos GJ: The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under positive selection in the subspecies that cause syphilis. FEMS Immunol Med Microbiol 2008, 53(3):322-332.
  • [37]Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA: Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and protective immune response. J Exp Med 1999, 189:647-656.
  • [38]Stamm LV, Greene SR, Bergen HL, Hardham JM, Barnes NY: Identification and sequence analysis of Treponema pallidum tprJ, a member of a polymorphic multigene family. FEMS Microbiol Lett 1998, 169(1):155-163.
  • [39]Giacani L, Molini B, Godornes C, Barrett L, Van Voorhis W, Centurion-Lara A, Lukehart SA: Quantitative analysis of tpr gene expression in Treponema pallidum isolates: Differences among isolates and correlation with T-cell responsiveness in experimental syphilis. Infect Immun 2007, 75(1):104-112.
  • [40]Giacani L, Centurion-Lara A, Lukehart SA: Length of guanosine homopolymeric repeats modulates promotor activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol 2007, 51(2):289-301.
  • [41]Cox DL, Luthra A, Dunha-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, Radolf JD: Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 2010, 78:5178-5194.
  • [42]Giacani L, Godornes C, Puray-Chavez M, Guerra-Giraldez C, Tompa M, Lukehart SA, Centurion-Lara A: TP0262 is a modulator of promotor activity of the tpr Subfamily II genes of Treponema pallidum ssp. pallidum. Mol Microbiol 2009, 72(5):1087-1099.
  • [43]Leader BT, Godornes C, Van Voorhis WC, Lukehart SA: CD4+ lymphocytes and gamma interferon predominate in local immune responses in early experimental syphilis. Infect Immun 2007, 75(6):3021-3026.
  • [44]Van Voorhis WC, Barrett LK, Koelle DM, Nasio JM, Plummer FA: Primary and secondary syphilis lesions contain mRNA for Th1 cytokines. J Infect Dis 1996, 173(2):491-495.
  • [45]Cruz AR, Ramirez LG, Zuluaga AV, Pillay A, Abreu C, Valencia CA, La Vake C, Cervantes JL, Dunham-Ems S, Cartun R, Mavilio D, Radolf JD, Salazar JC: Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl Trop Dis 2012, 6(7):e1717.
  • [46]Lukehart SA: Activation of macrophages by products of lymphocytes from normal and syphilitic rabbits. Infect Immun 1982, 37(1):64-69.
  • [47]Gayet-Ageron A, Ninet B, Toutous-Trellu L, Lautenschlager S, Furrer H, Piguet V, Schrenzel J, Hirschel B: Assessment of a real-time PCR test to diagnose syphilis from diverse biological samples. Sex Transm Infect 2009, 85:264-269.
  • [48]Grange PA, Gressier L, Dion PL, Farhi D, Benhaddou N, Gerhardt P, Morini JP, Deleuze J, Pantoja C, Bianchi A, Lassau F, Avril MF, Janier M, Dupin N: Evaluation of a PCR test for detection of Treponema pallidum in swabs and blood. J Clin Microbiol 2012, 50(3):546-552.
  • [49]Martin IE, Tsang RSW, Sutherland K, Tillay P, Read R, Anderson B, Roy C, Singh AE: Molecular characterization of syphilis in pacients in Canada: Azitromycin resistance and detection of Treponema pallidum DNA in whole-blood samples versus ulcerative swabs. J Clin Microbiol 2009, 47(6):1668-1673.
  • [50]Woznicová V, Šmajs D, Wechsler D, Matějková P, Flasarová M: Detection of Treponema pallidum subsp. pallidum from skin lesions, serum, and cerebrospinal fluid in an infant with congenital syphilis after clindamycin treatment of the mother during pregnancy. J Clin Microbiol 2007, 45:659-661.
  • [51]Stamm LV, Bergen HL: A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother 2000, 44:806-807.
  • [52]Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, Engelman J, Mitchell SJ, Rompalo AM, Marra CM, Klausner JD: Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med 2004, 351:154-158.
  • [53]Matějková P, Flasarová M, Zákoucká H, Bořek M, Křemenová S, Arenberger P, Woznicová V, Weinstock GM, Šmajs D: Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol 2009, 58:832-836.
  • [54]Preacher KJ: Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence [Computer software]. 2001. http://quantpsy.org webcite
  文献评价指标  
  下载次数:5次 浏览次数:12次