期刊论文详细信息
BMC Cancer
Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST)
Margherita Nannini1  Annalisa Astolfi2  Milena Urbini2  Valentina Indio2  Donatella Santini5  Michael C Heinrich4  Christopher L Corless3  Claudio Ceccarelli5  Maristella Saponara2  Anna Mandrioli1  Cristian Lolli1  Giorgio Ercolani6  Giovanni Brandi1  Guido Biasco2  Maria A Pantaleo2 
[1] Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
[2] “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
[3] Department of Pathology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
[4] Portland VA Medical Center and Knight Cancer Institute, and Division of Hematology and Oncology, Oregon Health & Science University Portland, Portland, OR, USA
[5] Pathology Unit, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
[6] Transplant, General and Emergency Surgery Department, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
关键词: QuadrupleWT;    RAS;    SDHA;    Succinate dehydrogenase;    PDGFRA;    KIT;    Wild-type;    Gastrointestinal stromal tumors (GIST);   
Others  :  1121056
DOI  :  10.1186/1471-2407-14-685
 received in 2014-01-23, accepted in 2014-09-17,  发布年份 2014
PDF
【 摘 要 】

Background

About 10-15% of adult gastrointestinal stromal tumors (GIST) and the vast majority of pediatric GIST do not harbour KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations (J Clin Oncol 22:3813–3825, 2004; Hematol Oncol Clin North Am 23:15–34, 2009). The molecular biology of these GIST, originally defined as KIT/PDGFRA wild-type (WT), is complex due to the existence of different subgroups with distinct molecular hallmarks, including defects in the succinate dehydrogenase (SDH) complex and mutations of neurofibromatosis type 1 (NF1), BRAF, or KRAS genes (RAS-pathway or RAS-P).

In this extremely heterogeneous landscape, the clinical profile and molecular abnormalities of the small subgroup of WT GIST suitably referred to as quadruple wild-type GIST (quadrupleWT or KITWT/PDGFRAWT/SDHWT/RAS-PWT) remains undefined. The aim of this study is to investigate the genomic profile of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, by using a massively parallel sequencing and microarray approach, and compare it with the genomic profile of other GIST subtypes.

Methods

We performed a whole genome analysis using a massively parallel sequencing approach on a total of 16 GIST cases (2 KITWT/PDGFRAWT/SDHWT and SDHBIHC+/SDHAIHC+, 2 KITWT/PDGFRAWT/SDHAmut and SDHBIHC-/SDHAIHC- and 12 cases of KITmut or PDGFRAmut GIST). To confirm and extend the results, whole-genome gene expression analysis by microarray was performed on 9 out 16 patients analyzed by RNAseq and an additional 20 GIST patients (1 KITWT/PDGFRAWTSDHAmut GIST and 19 KITmut or PDGFRAmut GIST). The most impressive data were validated by quantitave PCR and Western Blot analysis.

Results

We found that both cases of quadrupleWT GIST had a genomic profile profoundly different from both either KIT/PDGFRA mutated or SDHA-mutated GIST. In particular, the quadrupleWT GIST tumors are characterized by the overexpression of molecular markers (CALCRL and COL22A1) and of specific oncogenes including tyrosine and cyclin- dependent kinases (NTRK2 and CDK6) and one member of the ETS-transcription factor family (ERG).

Conclusion

We report for the first time an integrated genomic picture of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, using massively parallel sequencing and gene expression analyses, and found that quadrupleWT GIST have an expression signature that is distinct from SDH-mutant GIST as well as GIST harbouring mutations in KIT or PDGFRA. Our findings suggest that quadrupleWT GIST represent another unique group within the family of gastrointestintal stromal tumors.

【 授权许可】

   
2014 Nannini et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150211015722424.pdf 1394KB PDF download
Figure 5. 58KB Image download
Figure 4. 152KB Image download
Figure 3. 125KB Image download
Figure 2. 51KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Corless CL, Fletcher JA, Heinrich MC: Biology of gastrointestinal stromal tumors. J Clin Oncol 2004, 22:3813-3825.
  • [2]Janeway KA, Pappo AS: Pediatric gastrointestinal stromal tumor. Hematol Oncol Clin North Am 2009, 23:15-34.
  • [3]Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer S, Fletcher CD, Silberman S, Dimitrijevic S, Fletcher JA: Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003, 21:4342-4349.
  • [4]Debiec-Rychter M, Sciot R, Le Cesne A, Schlemmer M, Hohenberger P, van Oosterom AT, Blay JY, Leyvraz S, Stul M, Casali PG, Zalcberg J, Verweij J, Van Glabbeke M, Hagemeijer A, Judson I, EORTC Soft Tissue and Bone Sarcoma Group; Italian Sarcoma Group; Australasian GastroIntestinal Trials Group: KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 2006, 42:1093-1103.
  • [5]Heinrich MC, Owzar K, Corless CL, Hollis D, Borden EC, Fletcher CD, Ryan CW, von Mehren M, Blanke CD, Rankin C, Benjamin RS, Bramwell VH, Demetri GD, Bertagnolli MM, Fletcher JA: Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol 2008, 26:5360-5367.
  • [6]Gill AJ, Chou A, Vilain R, Clarkson A, Lui M, Jin R, Tobias V, Samra J, Goldstein D, Smith C, Sioson L, Parker N, Smith RC, Sywak M, Sidhu SB, Wyatt JM, Robinson BG, Eckstein RP, Benn DE, Clifton-Bligh RJ: Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types. Am J Surg Pathol 2010, 34:636-644.
  • [7]Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J: Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol 2011, 35:1712-1721.
  • [8]Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P, Gaal J, Dahia PL, Liegl B, Ball ER, Raygada M, Lai AH, Kelly L, Hornick JL, O’Sullivan M, de Krijger RR, Dinjens WN, Demetri GD, Antonescu CR, Fletcher JA, Helman L, Stratakis CA, NIH Pediatric and Wild-Type GIST Clinic: Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci U S A 2011, 108:314-318.
  • [9]Pantaleo MA, Astolfi A, Indio V, Moore R, Thiessen N, Heinrich MC, Gnocchi C, Santini D, Catena F, Formica S, Martelli PL, Casadio R, Pession A, Biasco G: SDHA loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing. J Natl Cancer Inst 2011, 103:983-987.
  • [10]Pantaleo MA, Nannini M, Astolfi A, Biasco G, GIST Study Group Bologna: A distinct pediatric-type gastrointestinal stromal tumor in adults: potential role of succinate dehydrogenase subunit A mutations. Am J Surg Pathol 2011, 35:1750-1752.
  • [11]Italiano A, Chen CL, Sung YS, Singer S, DeMatteo RP, LaQuaglia MP, Besmer P, Socci N, Antonescu CR: SDHA loss of function mutations in a subset of young adult wild-type gastrointestinal stromal tumors. BMC Cancer 2012, 12:408. BioMed Central Full Text
  • [12]Wagner AJ, Remillard SP, Zhang YX, Doyle LA, George S, Hornick JL: Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol 2013, 26:289-294.
  • [13]Dwight T, Benn DE, Clarkson A, Vilain R, Lipton L, Robinson BG, Clifton-Bligh RJ, Gill AJ: Loss of SDHA expression identifies SDHA mutations in succinate dehydrogenase-deficient gastrointestinal stromal tumors. Am J Surg Pathol 2013, 37:226-233.
  • [14]Oudijk L, Gaal J, Korpershoek E, van Nederveen FH, Kelly L, Schiavon G, Verweij J, Mathijssen RH, den Bakker MA, Oldenburg RA, van Loon RL, O’Sullivan MJ, de Krijger RR, Dinjens WN: SDHA mutations in adult and pediatric wild-type gastrointestinal stromal tumors. Mod Pathol 2013, 26:456-463.
  • [15]Miettinen M, Killian JK, Wang ZF, Lasota J, Lau C, Jones L, Walker R, Pineda M, Zhu YJ, Kim SY, Helman L, Meltzer P: Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol 2013, 37:234-240.
  • [16]Pantaleo MA, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V, Saponara M, Formica S, Ceccarelli C, Casadio R, Rossi G, Bertolini F, Santini D, Pirini MG, Fiorentino M, Basso U, Biasco G, on behalf of GIST Study Group, University of Bologna, Bologna, Italy: Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet 2013. Epub online before print
  • [17]Rege TA, Wagner AJ, Corless CL, Heinrich MC, Hornick JL: “Pediatric-type” gastrointestinal stromal tumors in adults: distinctive histology predicts genotype and clinical behavior. Am J Surg Pathol 2011, 35:495-504.
  • [18]Chou A, Chen J, Clarkson A, Samra JS, Clifton-Bligh RJ, Hugh TJ, Gill AJ: Succinate dehydrogenase-deficient GISTs are characterized by IGF1R overexpression. Mod Pathol 2012, 25:1307-1313.
  • [19]Nannini M, Astolfi A, Paterini P, Urbini M, Santini D, Catena F, Indio V, Casadio R, Pinna AD, Biasco G, Pantaleo MA: Expression of IGF-1 receptor in KIT/PDGF receptor-α wild-type gastrointestinal stromal tumors with succinate dehydrogenase complex dysfunction. Future Oncol 2013, 9:121-126.
  • [20]Belinsky MG, Rink L, Flieder DB, Jahromi MS, Schiffman JD, Godwin AK, Mehren M: Overexpression of insulin-like growth factor 1 receptor and frequent mutational inactivation of SDHA in wild-type SDHB-negative gastrointestinal stromal tumors. Genes Chromosomes Cancer 2013, 52:214-224.
  • [21]Lasota J, Wang Z, Kim SY, Helman L, Miettinen M: Expression of the receptor for type I insulin-like growth factor (IGF1R) in gastrointestinal stromal tumors: an immunohistochemical study of 1078 cases with diagnostic and therapeutic implications. Am J Surg Pathol 2013, 37:114-119.
  • [22]McWhinney SR, Pasini B, Stratakis CA: Familial gastrointestinal stromal tumors and germ-line mutations. N Engl J Med 2007, 357:1054-1056.
  • [23]Pasini B, McWhinney SR, Bei T, Matyakhina L, Stergiopoulos S, Muchow M, Boikos SA, Ferrando B, Pacak K, Assie G, Baudin E, Chompret A, Ellison JW, Briere JJ, Rustin P, Gimenez-Roqueplo AP, Eng C, Carney JA, Stratakis CA: Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008, 16:79-88.
  • [24]Zhang L, Smyrk TC, Young WF Jr, Stratakis CA, Carney JA: Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviourally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol 2010, 34:53-64.
  • [25]Bajor J: Gastrointestinal stromal tumors in patients with type 1 neurofibromatosis. Clin Exp Med J 2009, 3:247-254.
  • [26]Agaram NP, Wong GC, Guo T, Maki RG, Singer S, Dematteo RP, Besmer P, Antonescu CR: Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 2008, 47:853-859.
  • [27]Hostein I, Faur N, Primois C, Boury F, Denard J, Emile JF, Bringuier PP, Scoazec JY, Coindre JM: BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol 2010, 133:141-148.
  • [28]Daniels M, Lurkin I, Pauli R, Erbstösser E, Hildebrandt U, Hellwig K, Zschille U, Lüders P, Krüger G, Knolle J, Stengel B, Prall F, Hertel K, Lobeck H, Popp B, Theissig F, Wünsch P, Zwarthoff E, Agaimy A, Schneider-Stock R: Spectrum of KIT/PDGFRA/BRAF mutations and Phosphatidylinositol-3-Kinase pathway gene alterations in gastrointestinal stromal tumors (GIST). Cancer Lett 2011, 312:43-54.
  • [29]Pantaleo MA, Nannin M, Corless CL, Heinrich MC: Quadruple wild-type (WT) GIST: defining the subset of GISTs that lack abnormalities of KIT, PDGFRA, SDH, and the RAS signalling pathway. Cancer Med 2014. in press
  • [30]Pantaleo MA, Astolfi A, Nannini M, Ceccarelli C, Formica S, Santini D, Heinrich MC, Corless C, Dei Tos AP, Paterini P, Catena F, Maleddu A, Saponara M, Di Battista M, Biasco G: Differential expression of neural markers in KIT and PDGFRA wild-type gastrointestinal stromal tumours. Histopathology 2011, 59:1071-1080.
  • [31]Beadling C, Patterson J, Justusson E, Nelson D, Pantaleo MA, Hornick JL, Chacón M, Corless CL, Heinrich MC: Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA. Cancer Med 2013, 2:21-31.
  • [32]Muff R, Born W, Fischer JA: Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur J Endocrinol 1995, 133:17-20.
  • [33]Hagner S, Stahl U, Grimm T, Stürzl M, Lang RE: Expression of calcitonin receptor-like receptor in human vascular tumours. J Clin Pathol 2006, 59:1104-1107.
  • [34]Mennel HD, Hallier-Neelsen M, Hagner S, Benes L: Two novel cell specific receptor proteins, CRLR and CD 117 in human glial tumors. Clin Neuropathol 2006, 25:107-114.
  • [35]Benes L, Kappus C, McGregor GP, Bertalanffy H, Mennel HD, Hagner S: The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas. J Clin Pathol 2004, 57:172-176.
  • [36]Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L: A novel marker of tissue junctions, collagen XXII. J Biol Chem 2004, 279:22514-22521.
  • [37]Reddy ES, Rao VN, Papas TS: The erg gene: a human gene related to the ets oncogene. Proc Natl Acad Sci U S A 1987, 84:6131-6135.
  • [38]Hart AH, Corrick CM, Tymms MJ, Hertzog PJ, Kola I: Human ERG is a proto-oncogene with mitogenic and transforming activity. Oncogene 1995, 10:1423-1430.
  • [39]Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT: A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994, 6:146-151.
  • [40]Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005, 310:644-648.
  • [41]Martens JH: Acute myeloid leukemia: a central role for the ETS factor ERG. Int J Biochem Cell Biol 2011, 43:1413-1416.
  • [42]Miettinen M, Wang ZF, Paetau A, Tan SH, Dobi A, Srivastava S, Sesterhenn I: ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol 2011, 35:432-441.
  • [43]Wang WL, Patel NR, Caragea M, Hogendoorn PC, López-Terrada D, Hornick JL, Lazar AJ: Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol 2012, 25:1378-1383.
  • [44]Miettinen M, Wang Z, Sarlomo-Rikala M, Abdullaev Z, Pack SD, Fetsch JF: ERG expression in epithelioid sarcoma: a diagnostic pitfall. Am J Surg Pathol 2013, 37:1580-1585.
  • [45]Thiele CJ, Li Z, McKee AE: On Trk–the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 2009, 15:5962-5967.
  • [46]Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu XG, Azar CG, Lee CP, Evans AE: Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 1997, 31:49-55.
  • [47]McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, Ball DW, Baylin SB, Nelkin BD: Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci U S A 1999, 96:4540-4545.
  • [48]Satoh F, Mimata H, Nomura T, Fujita Y, Shin T, Sakamoto S, Hamada Y, Nomura Y: Autocrine expression of neurotrophins and their receptors in prostate cancer. Int J Urol 2001, 8:S28-S34.
  • [49]Harada T, Yatabe Y, Takeshita M, Koga T, Yano T, Wang Y, Giaccone G: Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clin Cancer Res 2011, 17:2638-2645.
  • [50]Kupferman ME, Jiffar T, El-Naggar A, Yilmaz T, Zhou G, Xie T, Feng L, Wang J, Holsinger FC, Yu D, Myers JN: TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene 2010, 29:2047-2059.
  • [51]Sclabas GM, Fujioka S, Schmidt C, Li Z, Frederick WA, Yang W, Yokoi K, Evans DB, Abbruzzese JL, Hess KR, Zhang W, Fidler IJ, Chiao PJ: Overexpression of tropomysin-related kinase B in metastatic human pancreatic cancer cells. Clin Cancer Res 2005, 11:440-449.
  • [52]Camoratto AM, Jani JP, Angeles TS, Maroney AC, Sanders CY, Murakata C, Neff NT, Vaught JL, Isaacs JT, Dionne CA: CEP-751 inhibits TRK receptor tyrosine kinase activity in vitro exhibits anti-tumor activity. Int J Cancer 1997, 72:673-679.
  • [53]Miknyoczki SJ, Dionne CA, Klein-Szanto AJ, Ruggeri BA: The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panc1) xenograft growth and in vivo invasiveness. Ann N YAcad Sci 1999, 880:252-262.
  • [54]Evans AE, Kisselbach KD, Yamashiro DJ, Ikegaki N, Camoratto AM, Dionne CA, Brodeur GM: Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin Cancer Res 1999, 5:3594-3602.
  • [55]Strock CJ, Park JI, Rosen M, Dionne C, Ruggeri B, Jones-Bolin S, Denmeade SR, Ball DW, Nelkin BD: CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth. Cancer Res 2003, 63:5559-5563.
  • [56]Marshall JL, Kindler H, Deeken J, Bhargava P, Vogelzang NJ, Rizvi N, Luhtala T, Boylan S, Dordal M, Robertson P, Hawkins MJ, Ratain MJ: Phase I trial of orallyadministeredCEP-701, anovelneurotrophin receptor-linked tyrosine kinase inhibitor. Invest New Drugs 2005, 23:31-37.
  • [57]Wang T, Lamb ML, Scott DA, Wang H, Block MH, Lyne PD, Lee JW, Davies AM, Zhang HJ, Zhu Y, Gu F, Han Y, Wang B, Mohr PJ, Kaus RJ, Josey JA, Hoffmann E, Thress K, Macintyre T, Wang H, Omer CA, Yu D: Identification of 4-aminopyrazolylpyrimidines as potent inhibitors of Trk kinases. J Med Chem 2008, 51:4672-4684.
  • [58]Chan E, Mulkerin D, Rothenberg M, Holen KD, Lockhart AC, Thomas J, Berlin J: A phase I trial of CEP-701 + gemcitabine in patients with advanced adenocarcinoma of the pancreas. Invest New Drugs 2008, 26:241-247.
  • [59]Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, Fletcher JA, Dewell S, Maki RG, Zheng D, Antonescu CR, Allis CD, Sawyers CL: ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 2010, 467:849-853.
  • [60]Nannini M, Biasco G, Astolfi A, Pantaleo MA: An overview on molecular biology of KIT/PDGFRA wild type (WT) gastrointestinal stromal tumours (GIST). J Med Genet 2013, 50:653-661.
  • [61]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 9:1105-1111.
  • [62]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [63]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
  • [64]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
  文献评价指标  
  下载次数:35次 浏览次数:7次