期刊论文详细信息
BMC Cancer
Vasculotide, an Angiopoietin-1 mimetic, reduces acute skin ionizing radiation damage in a preclinical mouse model
Elina Korpela3  Darren Yohan2  Lee CL Chin6  Anthony Kim5  Xiaoyong Huang4  Shachar Sade1  Paul Van Slyke4  Daniel J Dumont3  Stanley K Liu6 
[1] Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto M5S 1A8, Canada
[2] Department of Physics, Ryerson University, 350 Victoria St, Toronto M5B 2K3, Canada
[3] Department of Medical Biophysics, University of Toronto, 101 College St, Toronto M5G 1L7, Canada
[4] Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
[5] Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto M4N 3M5, Canada
[6] Department of Radiation Oncology, University of Toronto, 149 College St, Toronto M5T 1P5, Canada
关键词: Vasculotide;    Wound healing;    Diffuse reflectance spectroscopy;    Inflammation;    Angiopoietin-1;    Tie2;    Endothelial cells;    Acute radiation toxicity;    Skin;    Radiotherapy;   
Others  :  1134697
DOI  :  10.1186/1471-2407-14-614
 received in 2014-05-22, accepted in 2014-08-20,  发布年份 2014
PDF
【 摘 要 】

Background

Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Acute skin damage from cancer radiotherapy diminishes patients’ quality of life, yet effective biological interventions for this damage are lacking. Protecting microvascular endothelial cells from irradiation-induced perturbations is emerging as a targeted damage-reduction strategy. Since Angiopoetin-1 signaling through the Tie2 receptor on endothelial cells opposes microvascular perturbations in other disease contexts, we used a preclinical Angiopoietin-1 mimic called Vasculotide to investigate its effect on skin radiation toxicity using a preclinical model.

Methods

Athymic mice were treated intraperitoneally with saline or Vasculotide and their flank skin was irradiated with a single large dose of ionizing radiation. Acute cutaneous damage and wound healing were evaluated by clinical skin grading, histology and immunostaining. Diffuse reflectance optical spectroscopy, myeloperoxidase-dependent bioluminescence imaging of neutrophils and a serum cytokine array were used to assess inflammation. Microvascular endothelial cell response to radiation was tested with in vitro clonogenic and Matrigel tubule formation assays. Tumour xenograft growth delay experiments were also performed. Appreciable differences between treatment groups were assessed mainly using parametric and non-parametric statistical tests comparing areas under curves, followed by post-hoc comparisons.

Results

In vivo, different schedules of Vasculotide treatment reduced the size of the irradiation-induced wound. Although skin damage scores remained similar on individual days, Vasculotide administered post irradiation resulted in less skin damage overall. Vasculotide alleviated irradiation-induced inflammation in the form of reduced levels of oxygenated hemoglobin, myeloperoxidase bioluminescence and chemokine MIP-2. Surprisingly, Vasculotide-treated animals also had higher microvascular endothelial cell density in wound granulation tissue. In vitro, Vasculotide enhanced the survival and function of irradiated endothelial cells.

Conclusions

Vasculotide administration reduces acute skin radiation damage in mice, and may do so by affecting several biological processes. This radiation protection approach may have clinical impact for cancer radiotherapy patients by reducing the severity of their acute skin radiation damage.

【 授权许可】

   
2014 Korpela et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306044116792.pdf 3026KB PDF download
Figure 7. 59KB Image download
Figure 6. 44KB Image download
Figure 5. 97KB Image download
Figure 4. 123KB Image download
Figure 3. 64KB Image download
Figure 2. 54KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Liauw SL, Connell PP, Weichselbaum RR: New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med 2013, 5(173):173sr2.
  • [2]Pignol JP, Olivotto I, Rakovitch E, Gardner S, Sixel K, Beckham W, Vu TT, Truong P, Ackerman I, Paszat L: A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol 2008, 26(13):2085-2092.
  • [3]Gupta T, Agarwal J, Jain S, Phurailatpam R, Kannan S, Ghosh-Laskar S, Murthy V, Budrukkar A, Dinshaw K, Prabhash K, Chaturvedi P, D’Cruz A: Three-dimensional conformal radiotherapy (3D-CRT) versus intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the head and neck: a randomized controlled trial. Radiother Oncol 2012, 104(3):343-348.
  • [4]Kronowitz SJ: Current status of implant-based breast reconstruction in patients receiving postmastectomy radiation therapy. Plast Reconstr Surg 2012, 130(4):513e-523e.
  • [5]Bese NS, Hendry J, Jeremic B: Effects of prolongation of overall treatment time due to unplanned interruptions during radiotherapy of different tumor sites and practical methods for compensation. Int J Radiat Oncol Biol Phys 2007, 68(3):654-661.
  • [6]Chan RJ, Webster J, Chung B, Marquart L, Ahmed M, Garantziotis S: Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer 2014, 14:53. BioMed Central Full Text
  • [7]Brizel DM, Wasserman TH, Henke M, Strnad V, Rudat V, Monnier A, Eschwege F, Zhang J, Russell L, Oster W, Sauer R: Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 2000, 18(19):3339-3345.
  • [8]Antonadou D, Pepelassi M, Synodinou M, Puglisi M, Throuvalas N: Prophylactic use of amifostine to prevent radiochemotherapy-induced mucositis and xerostomia in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2002, 52(3):739-747.
  • [9]Bardet E, Martin L, Calais G, Alfonsi M, Feham NE, Tuchais C, Boisselier P, Dessard-Diana B, Seng SH, Garaud P, Auperin A, Bourhis J: Subcutaneous compared with intravenous administration of amifostine in patients with head and neck cancer receiving radiotherapy: final results of the GORTEC2000-02 phase III randomized trial. J Clin Oncol 2011, 29(2):127-133.
  • [10]Denham JW, Hauer-Jensen M: The radiotherapeutic injury–a complex ‘wound’. Radiother Oncol 2002, 63(2):129-145.
  • [11]Jourdan MM, Lopez A, Olasz EB, Duncan NE, Demara M, Kittipongdaja W, Fish BL, Mader M, Schock A, Morrow NV, Semenenko VA, Baker JE, Moulder JE, Lazarova Z: Laminin 332 deposition is diminished in irradiated skin in an animal model of combined radiation and wound skin injury. Radiat Res 2011, 176(5):636-648.
  • [12]Holler V, Buard V, Gaugler MH, Guipaud O, Baudelin C, Sache A, Perez Mdel R, Squiban C, Tamarat R, Milliat F, Benderitter M: Pravastatin limits radiation-induced vascular dysfunction in the skin. J Invest Dermatol 2009, 129(5):1280-1291.
  • [13]Imaizumi N, Monnier Y, Hegi M, Mirimanoff RO, Ruegg C: Radiotherapy suppresses angiogenesis in mice through TGF-betaRI/ALK5-dependent inhibition of endothelial cell sprouting. PLoS One 2010, 5(6):e11084.
  • [14]Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, Degraff WG, Tsokos M, Wink DA, Isenberg JS, Roberts DD: Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med 2009, 1(3):3ra7.
  • [15]Augustin HG, Koh GY, Thurston G, Alitalo K: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 2009, 10(3):165-177.
  • [16]David S, Ghosh CC, Kumpers P, Shushakova N, Van Slyke P, Khankin EV, Karumanchi SA, Dumont D, Parikh SM: Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality. Am J Physiol Lung Cell Mol Physiol 2011, 300(6):L851-L862.
  • [17]Kumpers P, Gueler F, David S, Slyke PV, Dumont DJ, Park JK, Bockmeyer CL, Parikh SM, Pavenstadt H, Haller H, Shushakova N: The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care 2011, 15(5):R261. BioMed Central Full Text
  • [18]Van Slyke P, Alami J, Martin D, Kuliszewski M, Leong-Poi H, Sefton MV, Dumont D: Acceleration of diabetic wound healing by an angiopoietin peptide mimetic. Tissue Eng Part A 2009, 15(6):1269-1280.
  • [19]Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG: The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 2005, 118(Pt 4):771-780.
  • [20]Yuan HT, Khankin EV, Karumanchi SA, Parikh SM: Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 2009, 29(8):2011-2022.
  • [21]Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY: Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circ Res 2000, 86(1):24-29.
  • [22]Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, Altieri DC, Sessa WC: Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 2000, 275(13):9102-9105.
  • [23]Pizurki L, Zhou Z, Glynos K, Roussos C, Papapetropoulos A: Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Br J Pharmacol 2003, 139(2):329-336.
  • [24]Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD: Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000, 6(4):460-463.
  • [25]Witzenbichler B, Westermann D, Knueppel S, Schultheiss HP, Tschope C: Protective role of angiopoietin-1 in endotoxic shock. Circulation 2005, 111(1):97-105.
  • [26]Hwang JA, Lee EH, Lee SD, Park JB, Jeon BH, Cho CH: COMP-Ang1 ameliorates leukocyte adhesion and reinforces endothelial tight junctions during endotoxemia. Biochem Biophys Res Commun 2009, 381(4):592-596.
  • [27]Cho CH, Sung HK, Kim KT, Cheon HG, Oh GT, Hong HJ, Yoo OJ, Koh GY: COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci U S A 2006, 103(13):4946-4951.
  • [28]Shin HY, Lee YJ, Kim HJ, Park CK, Kim JH, Wang KC, Kim DG, Koh GY, Paek SH: Protective role of COMP-Ang1 in ischemic rat brain. J Neurosci Res 2010, 88(5):1052-1063.
  • [29]Tao Z, Chen B, Tan X, Zhao Y, Wang L, Zhu T, Cao K, Yang Z, Kan YW, Su H: Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci U S A 2011, 108(5):2064-2069.
  • [30]Cho CH, Kammerer RA, Lee HJ, Steinmetz MO, Ryu YS, Lee SH, Yasunaga K, Kim KT, Kim I, Choi HH, Kim W, Kim SH, Park SK, Lee GM, Koh GY: COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci U S A 2004, 101(15):5547-5552.
  • [31]Kim KT, Choi HH, Steinmetz MO, Maco B, Kammerer RA, Ahn SY, Kim HZ, Lee GM, Koh GY: Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem 2005, 280(20):20126-20131.
  • [32]Kwak HJ, Lee SJ, Lee YH, Ryu CH, Koh KN, Choi HY, Koh GY: Angiopoietin-1 inhibits irradiation- and mannitol-induced apoptosis in endothelial cells. Circulation 2000, 101(19):2317-2324.
  • [33]Cho CH, Kammerer RA, Lee HJ, Yasunaga K, Kim KT, Choi HH, Kim W, Kim SH, Park SK, Lee GM, Koh GY: Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci U S A 2004, 101(15):5553-5558.
  • [34]Lee HJ, Bae SW, Koh GY, Lee YS: COMP-Ang1, angiopoietin-1 variant protects radiation-induced bone marrow damage in C57BL/6 mice. J Radiat Res 2008, 49(3):313-320.
  • [35]Tournaire R, Simon MP, le Noble F, Eichmann A, England P, Pouyssegur J: A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep 2004, 5(3):262-267.
  • [36]Douglas BG, Fowler JF: The effect of multiple small doses of X rays on skin reactions in the mouse and a basic interpretation. 1976. Radiat Res 2012, 178(2):AV125-AV138.
  • [37]Douglas BG, Fowler JF: The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res 1976, 66(2):401-426.
  • [38]Yohan D, Kim A, Korpela E, Liu SK, Niu C, Wilson BC, Chin LCL: Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy. Biomed Opt Express 2014, 5(5):1309-1320.
  • [39]Gross S, Gammon ST, Moss BL, Rauch D, Harding J, Heinecke JW, Ratner L, Piwnica-Worms D: Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med 2009, 15(4):455-461.
  • [40]Shao R, Guo X: Human microvascular endothelial cells immortalized with human telomerase catalytic protein: a model for the study of in vitro angiogenesis. Biochem Biophys Res Commun 2004, 321(4):788-794.
  • [41]Kollias N, Gillies R, Muccini JA, Uyeyama RK, Phillips SB, Drake LA: A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation. J Invest Dermatol 1995, 104(3):421-424.
  • [42]Stamatas GN, Kollias N: In vivo documentation of cutaneous inflammation using spectral imaging. J Biomed Opt 2007, 12(5):051603.
  • [43]Kolaczkowska E, Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013, 13(3):159-175.
  • [44]Janko M, Ontiveros F, Fitzgerald TJ, Deng A, DeCicco M, Rock KL: IL-1 generated subsequent to radiation-induced tissue injury contributes to the pathogenesis of radiodermatitis. Radiat Res 2012, 178(3):166-172.
  • [45]Okunieff P, Xu J, Hu D, Liu W, Zhang L, Morrow G, Pentland A, Ryan JL, Ding I: Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int J Radiat Oncol Biol Phys 2006, 65(3):890-898.
  • [46]Shi C, Pamer EG: Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011, 11(11):762-774.
  • [47]Soehnlein O, Lindbom L: Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010, 10(6):427-439.
  • [48]Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, Peschke P, Hahn EW, Grone HJ, Yingling J, Lahn M, Wirkner U, Huber PE: LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. Clin Cancer Res 2012, 18(13):3616-3627.
  • [49]Katzel EB, Koltz PF, Tierney R, Williams JP, Awad HA, O’Keefe RJ, Langstein HN: The impact of Smad3 loss of function on TGF-beta signaling and radiation-induced capsular contracture. Plast Reconstr Surg 2011, 127(6):2263-2269.
  • [50]Bentzen SM: Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 2006, 6(9):702-713.
  • [51]Chin MS, Freniere BB, Lo YC, Saleeby JH, Baker SP, Strom HM, Ignotz RA, Lalikos JF, Fitzgerald TJ: Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin. J Biomed Opt 2012, 17(2):026010.
  • [52]Chin MS, Freniere BB, Bonney CF, Lancerotto L, Saleeby JH, Lo YC, Orgill DP, Fitzgerald TJ, Lalikos JF: Skin perfusion and oxygenation changes in radiation fibrosis. Plast Reconstr Surg 2013, 131(4):707-716.
  • [53]Rizza L, D’Agostino A, Girlando A, Puglia C: Evaluation of the effect of topical agents on radiation-induced skin disease by reflectance spectrophotometry. J Pharm Pharmacol 2010, 62(6):779-785.
  • [54]Wells M, Macmillan M, Raab G, MacBride S, Bell N, MacKinnon K, MacDougall H, Samuel L, Munro A: Does aqueous or sucralfate cream affect the severity of erythematous radiation skin reactions? A randomised controlled trial. Radiother Oncol 2004, 73(2):153-162.
  • [55]Denham JW, Hamilton CS, Simpson SA, Ostwald PM, O’Brien M, Kron T, Joseph DJ, Dear KB: Factors influencing the degree of erythematous skin reactions in humans. Radiother Oncol 1995, 36(2):107-120.
  • [56]Armstrong DA, Major JA, Chudyk A, Hamilton TA: Neutrophil chemoattractant genes KC and MIP-2 are expressed in different cell populations at sites of surgical injury. J Leukoc Biol 2004, 75(4):641-648.
  • [57]Hol J, Wilhelmsen L, Haraldsen G: The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J Leukoc Biol 2010, 87(3):501-508.
  • [58]Liang L, Hu D, Liu W, Williams JP, Okunieff P, Ding I: Celecoxib reduces skin damage after radiation: selective reduction of chemokine and receptor mRNA expression in irradiated skin but not in irradiated mammary tumor. Am J Clin Oncol 2003, 26(4):S114-S121.
  • [59]Fox J, Gordon JR, Haston CK: Combined CXCR1/CXCR2 antagonism decreases radiation-induced alveolitis in the mouse. Radiat Res 2011, 175(5):657-664.
  • [60]Kaneider NC, Agarwal A, Leger AJ, Kuliopulos A: Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat Med 2005, 11(6):661-665.
  • [61]Gaugler MH, Squiban C, Claraz M, Schweitzer K, Weksler B, Gourmelon P, Van der Meeren A: Characterization of the response of human bone marrow endothelial cells to in vitro irradiation. Br J Haematol 1998, 103(4):980-989.
  • [62]Patchen ML, MacVittie TJ, Williams JL, Schwartz GN, Souza LM: Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 1991, 77(3):472-480.
  • [63]Wung BS, Ni CW, Wang DL: ICAM-1 induction by TNFalpha and IL-6 is mediated by distinct pathways via Rac in endothelial cells. J Biomed Sci 2005, 12(1):91-101.
  • [64]Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, Ernst M, Jones SA, Topley N, Jenkins BJ: IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol 2008, 181(3):2189-2195.
  • [65]Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA: Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001, 14(6):705-714.
  • [66]Flanders KC, Ho BM, Arany PR, Stuelten C, Mamura M, Paterniti MO, Sowers A, Mitchell JB, Roberts AB: Absence of Smad3 induces neutrophil migration after cutaneous irradiation: possible contribution to subsequent radioprotection. Am J Pathol 2008, 173(1):68-76.
  • [67]Waxman AB, Mahboubi K, Knickelbein RG, Mantell LL, Manzo N, Pober JS, Elias JA: Interleukin-11 and interleukin-6 protect cultured human endothelial cells from H2O2-induced cell death. Am J Respir Cell Mol Biol 2003, 29(4):513-522.
  • [68]Chou CH, Chen SU, Cheng JC: Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha. Int J Radiat Oncol Biol Phys 2009, 75(5):1553-1561.
  • [69]Li B, Zhang C, He F, Liu W, Yang Y, Liu H, Liu X, Wang J, Zhang L, Deng B, Gao F, Cui J, Liu C, Cai J: GSK-3beta inhibition attenuates LPS-induced death but aggravates radiation-induced death via down-regulation of IL-6. Cell Physiol Biochem 2013, 32(6):1720-1728.
  • [70]Lee EG, Mickle-Kawar BM, Gallucci RM: IL-6 deficiency exacerbates skin inflammation in a murine model of irritant dermatitis. J Immunotoxicol 2013, 10(2):192-200.
  • [71]Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N: Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 2003, 73(6):713-721.
  • [72]DeBusk LM, Hallahan DE, Lin PC: Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. Exp Cell Res 2004, 298(1):167-177.
  • [73]Isenberg JS, Maxhimer JB, Hyodo F, Pendrak ML, Ridnour LA, DeGraff WG, Tsokos M, Wink DA, Roberts DD: Thrombospondin-1 and CD47 limit cell and tissue survival of radiation injury. Am J Pathol 2008, 173(4):1100-1112.
  • [74]Doctrow SR, Lopez A, Schock AM, Duncan NE, Jourdan MM, Olasz EB, Moulder JE, Fish BL, Mader M, Lazar J, Lazarova Z: A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J Invest Dermatol 2013, 133(4):1088-1096.
  • [75]Karamanolis G, Delladetsima I, Kouloulias V, Papaxoinis K, Panayiotides I, Haldeopoulos D, Triantafyllou K, Kelekis N, Ladas SD: Increased expression of VEGF and CD31 in postradiation rectal tissue: implications for radiation proctitis. Mediators Inflamm 2013, 2013:515048.
  • [76]Archambeau JO, Pezner R, Wasserman T: Pathophysiology of irradiated skin and breast. Int J Radiat Oncol Biol Phys 1995, 31(5):1171-1185.
  • [77]Williams JP, Brown SL, Georges GE, Hauer-Jensen M, Hill RP, Huser AK, Kirsch DG, Macvittie TJ, Mason KA, Medhora MM, Moulder JE, Okunieff P, Otterson MF, Robbins ME, Smathers JB, McBride WH: Animal models for medical countermeasures to radiation exposure. Radiat Res 2010, 173(4):557-578.
  • [78]Hong JH, Chiang CS, Tsao CY, Lin PY, McBride WH, Wu CJ: Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. Int J Radiat Biol 1999, 75(11):1421-1427.
  • [79]Schaue D, Kachikwu EL, McBride WH: Cytokines in radiobiological responses: a review. Radiat Res 2012, 178(6):505-523.
  • [80]Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R: Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003, 300(5622):1155-1159.
  • [81]Oh ET, Park MT, Song MJ, Lee H, Cho YU, Kim SJ, Chu YC, Choi EK, Park HJ: Radiation-induced angiogenic signaling pathway in endothelial cells obtained from normal and cancer tissue of human breast. Oncogene 2013, 33(10):1229-1238.
  • [82]Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW: Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 2012, 177(3):311-327.
  • [83]Satoh N, Yamada Y, Kinugasa Y, Takakura N: Angiopoietin-1 alters tumor growth by stabilizing blood vessels or by promoting angiogenesis. Cancer Sci 2008, 99(12):2373-2379.
  • [84]Chakroborty D, Sarkar C, Yu H, Wang J, Liu Z, Dasgupta PS, Basu S: Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci U S A 2011, 108(51):20730-20735.
  • [85]Stoeltzing O, Ahmad SA, Liu W, McCarty MF, Wey JS, Parikh AA, Fan F, Reinmuth N, Kawaguchi M, Bucana CD, Ellis LM: Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res 2003, 63(12):3370-3377.
  • [86]Hwang JA, Lee EH, Kim HW, Park JB, Jeon BH, Cho CH: COMP-Ang1 potentiates the antitumor activity of 5-fluorouracil by improving tissue perfusion in murine Lewis lung carcinoma. Mol Cancer Res 2009, 7(12):1920-1927.
  • [87]Liu D, Martin V, Fueyo J, Lee OH, Xu J, Cortes-Santiago N, Alonso MM, Aldape K, Colman H, Gomez-Manzano C: Tie2/TEK modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype. Oncotarget 2010, 1(8):700-709.
  • [88]Meyer J, Balch G, Willett C, Czito B: Update on treatment advances in combined-modality therapy for anal and rectal carcinomas. Curr Oncol Rep 2011, 13(3):177-185.
  • [89]Russo G, Haddad R, Posner M, Machtay M: Radiation treatment breaks and ulcerative mucositis in head and neck cancer. Oncologist 2008, 13(8):886-898.
  • [90]de Jongh RT, Serne EH, IJzerman RG, de Vries G, Stehouwer CD: Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation 2004, 109(21):2529-2535.
  • [91]Hunter GK, Reddy CA, Klein EA, Kupelian P, Angermeier K, Ulchaker J, Chehade N, Altman A, Ciezki JP: Long-term (10-year) gastrointestinal and genitourinary toxicity after treatment with external beam radiotherapy, radical prostatectomy, or brachytherapy for prostate cancer. Prostate Cancer 2012, 2012:853487.
  • [92]Dorr W, Hendry JH: Consequential late effects in normal tissues. Radiother Oncol 2001, 61(3):223-231.
  文献评价指标  
  下载次数:87次 浏览次数:25次