期刊论文详细信息
BMC Evolutionary Biology
Dact genes are chordate specific regulators at the intersection of Wnt and Tgf-β signaling pathways
Susanne Dietrich3  Lúcia Elvira Alvares2  Ricardo Guerreiro Janousek2  Débora Rodrigues Sobreira3  Frank Richard Schubert1 
[1] Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK;Department of Histology and Embryology, State University of Campinas - UNICAMP, Rua Charles Darwin, s/n°, CP 6109, Campinas, SP CEP 13083-863, Brazil;Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK
关键词: Vertebrates;    Chordates;    Expression;    Protein motifs;    Evolution;    Tgfβ signaling;    Wnt signaling;    Frodo;    Dapper;    Dact;   
Others  :  1118040
DOI  :  10.1186/1471-2148-14-157
 received in 2013-10-06, accepted in 2014-07-04,  发布年份 2014
PDF
【 摘 要 】

Background

Dacts are multi-domain adaptor proteins. They have been implicated in Wnt and Tgfβ signaling and serve as a nodal point in regulating many cellular activities. Dact genes have so far only been identified in bony vertebrates. Also, the number of Dact genes in a given species, the number and roles of protein motifs and functional domains, and the overlap of gene expression domains are all not clear. To address these problems, we have taken an evolutionary approach, screening for Dact genes in the animal kingdom and establishing their phylogeny and the synteny of Dact loci. Furthermore, we performed a deep analysis of the various Dact protein motifs and compared the expression patterns of different Dacts.

Results

Our study identified previously not recognized dact genes and showed that they evolved late in the deuterostome lineage. In gnathostomes, four Dact genes were generated by the two rounds of whole genome duplication in the vertebrate ancestor, with Dact1/3 and Dact2/4, respectively, arising from the two genes generated during the first genome duplication. In actinopterygians, a further dact4r gene arose from retrotranscription. The third genome duplication in the teleost ancestor, and subsequent gene loss in most gnathostome lineages left extant species with a subset of Dact genes. The distribution of functional domains suggests that the ancestral Dact function lied with Wnt signaling, and a role in Tgfβ signaling may have emerged with the Dact2/4 ancestor. Motif reduction, in particular in Dact4, suggests that this protein may counteract the function of the other Dacts. Dact genes were expressed in both distinct and overlapping domains, suggesting possible combinatorial function.

Conclusions

The gnathostome Dact gene family comprises four members, derived from a chordate-specific ancestor. The ability to control Wnt signaling seems to be part of the ancestral repertoire of Dact functions, while the ability to inhibit Tgfβ signaling and to carry out specialized, ortholog-specific roles may have evolved later. The complement of Dact genes coexpressed in a tissue provides a complex way to fine-tune Wnt and Tgfβ signaling. Our work provides the basis for future structural and functional studies aimed at unraveling intracellular regulatory networks.

【 授权许可】

   
2014 Schubert et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206020240969.pdf 2867KB PDF download
Figure 6. 70KB Image download
Figure 5. 177KB Image download
20150213024656551.pdf 483KB PDF download
Figure 3. 181KB Image download
Figure 2. 93KB Image download
Figure 1. 80KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Croce JC, McClay DR: Evolution of the Wnt pathways. Methods Mol Biol 2008, 469:3-18.
  • [2]Huminiecki L, Goldovsky L, Freilich S, Moustakas A, Ouzounis C, Heldin CH: Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom. BMC Evol Biol 2009, 9:28.
  • [3]Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT: Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2002, 2(4):449-461.
  • [4]Gloy J, Hikasa H, Sokol SY: Frodo interacts with Dishevelled to transduce Wnt signals. Nat Cell Biol 2002, 4(5):351-357.
  • [5]Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J: Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 2003, 12(5):1251-1260.
  • [6]Zhang L, Zhou H, Su Y, Sun Z, Zhang H, Zhang L, Zhang Y, Ning Y, Chen YG, Meng A: Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science 2004, 306(5693):114-117.
  • [7]Su Y, Zhang L, Gao X, Meng F, Wen J, Zhou H, Meng A, Chen YG: The evolutionally conserved activity of Dapper2 in antagonizing TGF-beta signaling. FASEB J 2007, 21(3):682-690.
  • [8]Suriben R, Kivimae S, Fisher DA, Moon RT, Cheyette BN: Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 2009, 41(9):977-985.
  • [9]Kivimae S, Yang XY, Cheyette BN: All Dact (Dapper/Frodo) scaffold proteins dimerize and exhibit conserved interactions with Vangl, Dvl, and serine/threonine kinases. BMC Biochem 2011, 12:33.
  • [10]Meng F, Cheng X, Yang L, Hou N, Yang X, Meng A: Accelerated re-epithelialization in Dpr2-deficient mice is associated with enhanced response to TGFbeta signaling. J Cell Sci 2008, 121(Pt 17):2904-2912.
  • [11]Park JI, Ji H, Jun S, Gu D, Hikasa H, Li L, Sokol SY, McCrea PD: Frodo links Dishevelled to the p120-catenin/Kaiso pathway: distinct catenin subfamilies promote Wnt signals. Dev Cell 2006, 11(5):683-695.
  • [12]Gao X, Wen J, Zhang L, Li X, Ning Y, Meng A, Chen YG: Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J Biol Chem 2008, 283(51):35679-35688.
  • [13]Hikasa H, Sokol SY: The involvement of Frodo in TCF-dependent signaling and neural tissue development. Development 2004, 131(19):4725-4734.
  • [14]Brott BK, Sokol SY: A vertebrate homolog of the cell cycle regulator Dbf4 is an inhibitor of Wnt signaling required for heart development. Dev Cell 2005, 8(5):703-715.
  • [15]Teran E, Branscomb AD, Seeling JM: Dpr Acts as a molecular switch, inhibiting Wnt signaling when unphosphorylated, but promoting Wnt signaling when phosphorylated by casein kinase Idelta/epsilon. PLoS One 2009, 4(5):e5522.
  • [16]Chen H, Liu L, Ma B, Ma TM, Hou JJ, Xie GM, Wu W, Yang FQ, Chen YG: Protein kinase A-mediated 14-3-3 association impedes human Dapper1 to promote dishevelled degradation. J Biol Chem 2011, 286(17):14870-14880.
  • [17]Zhang L, Gao X, Wen J, Ning Y, Chen YG: Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 2006, 281(13):8607-8612.
  • [18]Waxman JS, Hocking AM, Stoick CL, Moon RT: Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes. Development 2004, 131(23):5909-5921.
  • [19]Holland PW, Garcia-Fernandez J, Williams NA, Sidow A: Gene duplications and the origins of vertebrate development. Dev Suppl 1994, 125-133.
  • [20]Dehal P, Boore JL: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005, 3(10):e314.
  • [21]Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, et al.: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004, 431(7011):946-957.
  • [22]Taylor JS, Van de Peer Y, Braasch I, Meyer A: Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 2001, 356(1414):1661-1679.
  • [23]Postlethwait JH: The zebrafish genome in context: ohnologs gone missing. J Exp Zool B Mol Dev Evol 2007, 308(5):563-577.
  • [24]Fisher DA, Kivimae S, Hoshino J, Suriben R, Martin PM, Baxter N, Cheyette BN: Three Dact gene family members are expressed during embryonic development and in the adult brains of mice. Dev Dyn 2006, 235(9):2620-2630.
  • [25]Hunter NL, Hikasa H, Dymecki SM, Sokol SY: Vertebrate homologues of Frodo are dynamically expressed during embryonic development in tissues undergoing extensive morphogenetic movements. Dev Dyn 2006, 235(1):279-284.
  • [26]Suriben R, Fisher DA, Cheyette BN: Dact1 presomitic mesoderm expression oscillates in phase with Axin2 in the somitogenesis clock of mice. Dev Dyn 2006, 235(11):3177-3183.
  • [27]Alvares LE, Winterbottom FL, Jorges EC, Rodrigues Sobreira D, Xavier-Neto J, Schubert FR, Dietrich S: Chicken dapper genes are versatile markers for mesodermal tissues, embryonic muscle stem cells, neural crest cells, and neurogenic placodes. Dev Dyn 2009, 238(5):1166-1178.
  • [28]Gillhouse M, Wagner Nyholm M, Hikasa H, Sokol SY, Grinblat Y: Two Frodo/Dapper homologs are expressed in the developing brain and mesoderm of zebrafish. Dev Dyn 2004, 230(3):403-409.
  • [29]Kumar S, Hedges SB: A molecular timescale for vertebrate evolution. Nature 1998, 392(6679):917-920.
  • [30]Irie N, Sehara-Fujisawa A: The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information. BMC Biol 2007, 5:1.
  • [31]Sensiate LA, Sobreira DR, Da Veiga FC, Peterlini DJ, Pedrosa AV, Rirsch T, Joazeiro PP, Schubert FR, Collares-Buzato CB, Xavier-Neto J, Dietrich S, Alvares LE: Dact gene expression profiles suggest a role for this gene family in integrating Wnt and TGF-beta signaling pathways during chicken limb development. Dev Dyn 2013, 243(3):428-439.
  • [32]Kuraku S, Meyer A, Kuratani S: Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 2009, 26(1):47-59.
  • [33]Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Sachidanandam R, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP, Das S, Hirano M, McCurley N, Guo P, Rohner N, et al.: Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 2013, 45(4):415-421. 421e411-412
  • [34]Mehta TK, Ravi V, Yamasaki S, Lee AP, Lian MM, Tay BH, Tohari S, Yanai S, Tay A, Brenner S, Venkatesh B: Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc Natl Acad Sci U S A 2013, 110(40):16044-16049.
  • [35]Delsuc F, Brinkmann H, Chourrout D, Philippe H: Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006, 439(7079):965-968.
  • [36]Solovyev V, Kosarev P, Seledsov I, Vorobyev D: Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 2006, 7(Suppl 1):S10.1-12.
  • [37]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
  • [38]Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000, 302(1):205-217.
  • [39]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [40]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25(15):1972-1973.
  • [41]Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27(8):1164-1165.
  • [42]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [43]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36(Web Server issue):W465-W469.
  • [44]Le Vinh S, Von Haeseler A: IQPNNI: moving fast through tree space and stopping in time. Mol Biol Evol 2004, 21(8):1565-1571.
  • [45]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [46]Schmidt HA, Strimmer K, Vingron M, Von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 2002, 18(3):502-504.
  • [47]Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23(1):127-128.
  • [48]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14(6):1188-1190.
  • [49]Nakai K, Horton P: PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999, 24(1):34-36.
  • [50]La Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S: Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 2004, 17(6):527-536.
  • [51]Hamburger V, Hamilton HL: A series of normal stages in the development of the chick embryo. J Morphol 1951, 88:49-92.
  • [52]Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995, 203(3):253-310.
  • [53]Thisse C, Thisse B: High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 2008, 3(1):59-69.
  • [54]Schubert FR, Sobreira DR, Janousek RG, Alvares LE, Dietrich S: Phylogenetic trees for: Dact genes are chordate specific regulators at the intersection of Wnt and Tgf-beta signaling pathways. TreeBase 2014. http://purl.org/phylo/treebase/phylows/study/TB2:S15970 webcite
  文献评价指标  
  下载次数:33次 浏览次数:14次