期刊论文详细信息
BMC Medical Genomics
MicroRNA/mRNA profiling and regulatory network of intracranial aneurysm
Ranhui Duan1  Jia Li1  Hua Zeng1  Jia Chen1  Hua He1  Mingming Zhang2  Yugang Jiang2 
[1]State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan Province, China
[2]Department of Neurosurgery, Second Xiang-ya Hospital of Central South University, Changsha, Hunan Province, China
关键词: Inflammation;    miRNA-mRNA analysis;    Microarray analysis;    Intracranial aneurysm;   
Others  :  1091990
DOI  :  10.1186/1755-8794-6-36
 received in 2013-04-20, accepted in 2013-09-25,  发布年份 2013
PDF
【 摘 要 】

Background

Intracranial aneurysm (IA) is one of the most lethal forms of cerebrovascular diseases characterized by endothelial dysfunction, vascular smooth muscle cell phenotypic modulation, inflammation and consequently loss of vessel cells and extracellular matrix degradation. Besides environmental factors, genetics seem to be a very important factor in the genesis of this disease. Previous mRNA expression studies revealed a large number of differentially expressed genes between IA and control tissue. However, microRNAs (miRNA), small non-coding RNAs which are post-transcriptional regulators of gene expression, have been barely studied. Studying miRNAs could provide a hypothetical mechanism underlying rupture of IA.

Methods

A microarray study was carried out to determine difference in microRNAs and mRNA between patients’ IA tissues and controls. Quantitative RT-PCR assay compared the expression level between two groups (14 IA domes vs. 14 controls) were used for validation. Validated miRNAs were analyzed using Ingenuity Pathway Analysis (IPA) to identify the networks and pathways.

Results

18 miRNAs were confirmed by qPCR to be robustly down-regulated in 14 ruptured IA patients including hsa-mir-133b, hsa-mir-133a, hsa-mir-1, hsa-mir-143-3p, hsa-mir-145-3p, hsa-mir-145-5p, hsa-mir-455-5p, hsa-mir-143-5p, hsa-mir-23b-3p etc., of which 11 miRNAs are clusters: hsa-mir-1/has-mir-133a, hsa-mir-143/hsa-mir-145, hsa-mir-23b/hsa-mir-24-1, and hsa-mir-29b-2/hsa-mir-29c. 12 predicted functions were generated using IPA which showed significant associations with migration of phagocytes, proliferation of mononuclear leukocytes, cell movement of mononuclear leukocytes, cell movement of smooth muscle cells etc.

Conclusion

These data support common disease mechanisms that may be under miRNA control and provide exciting directions for further investigations aimed at elucidating the miRNA mechanisms and targets that may yield new therapies for IA.

【 授权许可】

   
2013 Jiang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128175624232.pdf 1096KB PDF download
Figure 3. 91KB Image download
Figure 2. 99KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Juvela S: Prevalence of and risk factors for intracranial aneurysms. Lancet Neurol 2011, 10(7):595-597.
  • [2]Tulamo R, Frösen J, Paetau A, Seitsonen S, Hernesniemi J, Niemelä M, et al.: Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am J Pathol 2010, 177:3224-3232.
  • [3]Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, Niemelä M, Hernesniemi J: Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathologica 2012, 123:773-786.
  • [4]Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M, Alvarez H, ter Brugge KG, Hans FJ: Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol 2011, 7(10):547-559.
  • [5]Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS: Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab 2012, 32(9):1659-1676.
  • [6]Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G: European stroke organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 2013, 35(2):93-112.
  • [7]Aoki T, Nishimura M: The development and the use of experimental animal models to study the underlying mechanisms of CA formation. J Biomed Biotechnol 2011, 2011:535921.
  • [8]Krischek B, Kasuya H, Tajima A, Akagawa H, Sasaki T, Yoneyama T, Ujiie H, Kubo O, Bonin M, Takakura K, Hori T, Inoue I: Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells. Neuroscience 2008, 154:1398-1407.
  • [9]Krischek B, Tatagiba M: The influence of genetics on intracranial aneurysm formation and rupture: current knowledge and its possible impact on future treatment. Adv Tech Stand Neurosurg 2008, 33:131-147.
  • [10]Li L, Yang X, Jiang F, Dusting GJ, Wu Z: Transcriptome-wide characterization of gene expression associated with unruptured intracranial aneurysms. European Neurology 2009, 62:330-337.
  • [11]Shi C, Awad IA, Jafari N, Lin S, Du P, Hage ZA, et al.: Genomics of human intracranial aneurysm wall. Stroke 2009, 40:1252-1261.
  • [12]Marchese E, Vignati A, Albanese A, Nucci CG, Sabatino G, Tirpakova B, et al.: Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul & Homeost Agents 2010, 24:185-195.
  • [13]Pera J, Korostynski M, Krzyszkowski T, Czopek J, Slowik A, Dziedzic T, et al.: Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation? Stroke 2010, 41:224-231.
  • [14]Hsia HC, Schwarzbauer JE: Meet the tenascins: multifunctional and mysterious. J Biol Chem 2005, 280:26641-26644.
  • [15]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
  • [16]Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, et al.: Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery 2006, 58:534-541.
  • [17]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
  • [18]Korja M, Silventoinen K, McCarron P, Zdravkovic S, Skytthe A, Haapanen A, et al.: Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic twin study. Stroke 2010, 41:2458-2462.
  • [19]Lynam-Lennon N, Maher SG, Reynolds JV: The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 2009, 84:55-71.
  • [20]Esteller M: Non-coding RNAs in human disease. Nat Rev Genet 2011, 12(12):861-874.
  • [21]Small EM, Frost RJ, Olson EN: MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010, 121(8):1022-1032.
  • [22]van Rooij E: The art of microRNA research. Circ Res 2011, 108:219-234.
  • [23]Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835-840.
  • [24]Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, Bochicchio A, Vicinanza C, Aquila I, Curcio A, Condorelli G, Indolfi C: MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 2011, 109(8):880-893.
  • [25]Xin M, Small EM, Sutherland LB, et al.: MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 2009, 23:2166-2178.
  • [26]Cheng Y, Liu X, Yang J, et al.: MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 2009, 105:158-166.
  • [27]Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G: The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 2009, 16(12):1590-1598.
  • [28]van Rooij E, Sutherland LB, Thatcher JE, et al.: Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 2008, 105:13027-13032.
  • [29]Siefert SA, Sarkar R: Matrix metalloproteinases in vascular physiology and disease. Vascular 2012, 20(4):210-216.
  • [30]Afek A, Harats D, Roth A, Keren G, George J: A functional role for inducible costimulator (ICOS) in atherosclerosis. Atherosclerosis 2005, 183(1):57-63.
  • [31]Ewing MM, Karper JC, Abdul S, de Jong RC, Peters HA, de Vries MR, Redeker A, Kuiper J, Toes RE, Arens R, Jukema JW, Quax PH: T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. Int J Cardiol 2013. in press
  • [32]Fournier NM, Lee B, Banasr M, Elsayed M, Duman RS: Vascular endothelial growth factor regulates adult hippocampal cell proliferation through MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology 2012, 63(4):642-652.
  • [33]de Nigris F, Rienzo M, Sessa M, Infante T, Cesario E, Ignarro LJ, Al-Omran M, Giordano A, Palinski W, Napoli C: Glycoxydation promotes vascular damage via MAPK-ERK/JNK pathways. J Cell Physiol 2012, 227(11):3639-3647.
  • [34]Krings T, Geibprasert S, ter Brugge KG: Pathomechanisms and treatment of pediatric aneurysms. Childs Nerv Syst 2010, 26:1309-1318.
  • [35]Small EM, Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature 2011, 469:336-342.
  • [36]van Rooij E, Olson EN: MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012, 11(11):860-872.
  • [37]Jamaluddin MS, Weakley SM, Zhang L, Kougias P, Lin PH, Yao Q, Chen C: miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn 2011, 11(1):79-89.
  • [38]Thum T: MicroRNA therapeutics in cardiovascular medicine. EMBO Mole Med 2012, 4:3-14.
  • [39]Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G: MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007, 13(5):613-618.
  • [40]Chen J, Yin H, Jiang Y, Radhakrishnan SK, Huang ZP, Li J, Shi Z, Kilsdonk EP, Gui Y, Wang DZ, Zheng XL: Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol 2011, 31(2):368-375.
  • [41]Bostjancic E, Zidar N, Stajer D, Glavac D: MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 2010, 115:163-169.
  • [42]Long X, Miano JM: Transforming growth factor-beta1 (TGF-beta1) utilizes distinct pathways for the transcriptional activation of microRNA 143/145 in human coronary artery smooth muscle cells. J Biol Chem 2011, 286(34):30119-30129.
  • [43]Boucher JM, Peterson SM, Urs S, Zhang C, Liaw L: The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem 2011, 286(32):28312-28321.
  • [44]Rangrez AY, Massy ZA, Metzinger-Le Meuth V, Metzinger L: miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells. Circulation: Cardiovasc Genet 2011, 4:197-205.
  • [45]Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, Garcia-Barrio MT, Zhang J, Chen YE: MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 2011, 20(2):205-210.
  • [46]Cordes KR, Sheehy NT, White MP, et al.: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009, 460:705-710.
  • [47]Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A: Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 2011, 286(32):28097-28110.
  • [48]Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008, 22(23):3242-3254.
  • [49]Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, Raaz U, Schoelmerich AM, Raiesdana A, Leeper NJ, McConnell MV, Dalman RL, Spin JM, Tsao PS: Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest 2012, 122(2):497-506.
  • [50]Maegdefessel L, Azuma J, Tsao PS: MicroRNA-29b regulation of abdominal aortic aneurysm development. Trends Cardiovasc Med 2013. in press
  • [51]Boon RA, Seeger T, Heydt S, Fischer A, Hergenreider E, Horrevoets AJ, Vinciguerra M, Rosenthal N, Sciacca S, Pilato M, van Heijningen P, Essers J, Brandes RP, Zeiher AM, Dimmeler S: MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res 2011, 109(10):1115-1119.
  • [52]Fort A, Borel C, Migliavacca E, Antonarakis SE, Fish RJ, Neerman-Arbez M: Regulation of fibrinogen production by microRNAs. Blood 2010, 116(14):2608-2615.
  • [53]Sinha S, Dutta S, Datta K, Ghosh AK, Mukhopadhyay D: Von Hippel-Lindau gene product modulates TIS11B expression in renal cell carcinoma: impact on vascular endothelial growth factor expression in hypoxia. J Biol Chem 2009, 284(47):32610-32618.
  • [54]Boon RA, Dimmeler S: MicroRNAs and aneurysm formation. Trends Cardiovasc Med 2011, 21(6):172-177.
  • [55]Ruigrok YM, Rinkel GJ: Genetics of intracranial aneurysms. Stroke 2008, 39(3):1049-1055.
  • [56]Ruigrok YM, Rinkel GJ: From GWAS to the clinic: risk factors for intracranial aneurysms. Genome Med 2010, 2:61. BioMed Central Full Text
  • [57]Roder C, Kasuya H, Harati A, Tatagiba M, Inoue I, Krischek B: Meta-analysis of microarray gene expression studies on intracranial aneurysms. Neuroscience 2012, 201:105-113.
  • [58]Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, Huang C, Zhou F, Liu M, Wu X, Wang X: miR-143 is down-regulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep 2012, 5(3):753-760.
  • [59]Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J 2009, 50(3):377-387.
  • [60]Leone V, D'Angelo D, Rubio I, de Freitas PM, Federico A, Colamaio M, Pallante P, Medeiros-Neto G, Fusco A: miR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1alpha. J Clin Endocrinol Metab 2011, 96(9):E1388-E1398.
  • [61]Kuivaniemi H, Prockop DJ, Wu Y, Madhatheri SL, Kleinert C, Earley JJ, Jokinen A, Stolle C, Majamaa K, Myllylä VV, et al.: Exclusion of mutations in the gene for type III collagen (COL3A1) as a common cause of intracranial aneurysms or cervical artery dissections: results from sequence analysis of the coding sequences of type III collagen from 55 unrelated patients. Neurology 1993, 43(12):2652-2658.
  • [62]Kontusaari S, Tromp G, Kuivaniemi H, Ladda RL, Prockop DJ: Inheritance of an RNA splicing mutation (G + 1 IVS20) in the type III procollagen gene (COL3A1) in a family having aortic aneurysms and easy bruisability: phenotypic overlap between familial arterial aneurysms and Ehlers-Danlos syndrome type IV. Am J Hum Genet 1990, 47(1):112-120.
  • [63]Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P: MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 2008, 105(15):5874-5878.
  • [64]Luna C, Li G, Qiu J, Epstein DL, Gonzalez P: Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis 2009, 15:2488-2497.
  • [65]Dawson K, Wakili R, Ordög B, Clauss S, Chen Y, Iwasaki Y, Voigt N, Qi XY, Sinner MF, Dobrev D, Kääb S, Nattel S: MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 2013.
  • [66]Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455(7209):58-63.
  • [67]Chavez RJ, Haney RM, Cuadra RH, Ganguly R, Adapala RK, Thodeti CK, Raman P: Upregulation of thrombospondin-1 expression by leptin in vascular smooth muscle cells via JAK2- and MAPK-dependent pathways. Am J Physiol Cell Physiol 2012, 303(2):C179-C191.
  • [68]Herzog B, Pellet-Many C, Britton G, Hartzoulakis B, Zachary IC: VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell 2011, 22(15):2766-2776.
  • [69]Guo F, Li Z, Song L, Han T, Feng Q, Guo Y, et al.: Increased apoptosis and cysteinyl aspartate specific protease-3 gene expression in human intracranial aneurysm. J Clin Neurosc 2007, 14:550-555.
  • [70]Ferns SP, Sprengers ME, van Rooij WJ, Rinkel GJ, van Rijn JC, Bipat S, Sluzewski M, Majoie CB: Coiling of intracranial aneurysms: a systematic review on initial occlusion and reopening and retreatment rates. Stroke 2009, 40:e523-e529.
  • [71]Nohata N, Hanazawa T, Kikkawa N, Sakurai D, Sasaki K, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nakagawa M, Okamoto Y, Seki N: Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int J Oncol 2011, 39(5):1099-1107.
  • [72]Somech R, Lev A, Simon AJ, Hanna S, Etzioni A: T- and B-cell defects in a novel purine nucleoside phosphorylase mutation. J Allergy Clin Immunol 2012, 130(2):539-542.
  • [73]Zhou G, Zhou Z, Ge S, Liu D, Zhang R, Xu G, Zhu W, Yin Q, Chen AF, Liu X: IL-18 accelerates the cell apoptosis by up-regulating cysteinyl leukotriene 2 receptor expression in human umbilical vein endothelial cells at the early stage of administration. Vascul Pharmacol 2009, 32:1659-1676.
  • [74]Chandrasekar B, Boylston WH, Venkatachalam K, Webster NJ, Prabhu SD, Valente AJ: Adiponectin blocks interleukin-18-mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK) activation and IKK/NF-kappaB/PTEN suppression. J Biol Chem 2008, 283:24889-24898.
  • [75]Duan L, Yang G, Zhang R, Feng L, Xu C: Advancement in the research on vascular endothelial growth inhibitor (VEGI). Target Oncol 2012, 7(1):87-90.
  • [76]Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475(7355):222-225.
  • [77]Ben-Baruch A, Xu L, Young PR, Bengali K, Oppenheim JJ, Wang JM: Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors. C-C CKR1, a receptor for macrophage inflammatory protein-1 alpha/Rantes, is also a functional receptor for MCP3. J Biol Chem 1995, 270(38):22123-22128.
  文献评价指标  
  下载次数:0次 浏览次数:3次