期刊论文详细信息
BMC Genomics
Identification and functional characterization of bidirectional gene pairs and their intergenic regions in maize
Yunliu Fan3  Rumei Chen3  Jun Zhao3  Lei Wang3  Suzhen Li1  Qiuxue Zhang3  Jian Tian3  Ye Li2  Xiaojin Zhou3  Xiaoqing Liu3 
[1] Department of Agronomy, Agricultural University of Hebei, Baoding 071000, China;School of life Science and Engineering, Southwest Technology University, Mianyang 621000, China;National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing 100081, China
关键词: Maize;    Bidirectional promoter;    Bidirectional gene pair;    Genome-wide;   
Others  :  1217291
DOI  :  10.1186/1471-2164-15-338
 received in 2013-12-21, accepted in 2014-04-25,  发布年份 2014
PDF
【 摘 要 】

Background

Bidirectional gene pairs exist as a specific form of gene organization in microorganisms and mammals as well as in model plant species, such as Arabidopsis and rice. Little is known about bidirectional gene pairs in maize, which has a large genome and is one of the most important grain crops.

Results

We conducted a genome-wide search in maize using genome sequencing results from the inbred line B73. In total, 1696 bidirectional transcript pairs were identified using a modified search model. We functionally characterized the promoter activity of the intergenic regions of most of the bidirectional transcript pairs that were expressed in embryos using a maize embryo transient expression system. A comparative study of bidirectional gene pairs performed for three monocot (Zea mays, Sorghum bicolor and Oryza sativa) and two dicot (Arabidopsis thaliana and Glycine max) plant genomes showed that bidirectional gene pairs were abundant in the five plant species. Orthologous bidirectional gene pairs were clearly distinguishable between the monocot and dicot species although the total numbers of orthologous bidirectional genes were similar. Analysis of the gene pairs using the Blast2GO software suite showed that the molecular functions (MF), cellular components (CC), and biological processes (BP) associated with the bidirectional transcripts were similar among the five plant species.

Conclusions

The evolutionary analysis of the function and structure of orthologous bidirectional gene pairs in various plant species revealed a potential pathway of their origin, which may be required for the evolution of a new species.

【 授权许可】

   
2014 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706022912608.pdf 1898KB PDF download
Figure 5. 67KB Image download
Figure 4. 69KB Image download
Figure 3. 191KB Image download
Figure 2. 135KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lawrence JG: Gene organization: selection, selfishness, and serendipity. Annu Rev Microbiol 2003, 57:419-440.
  • [2]Blumenthal T, Evans D, Link CD, Guffanti A, Lawson D, Thierry-Mieg J, Thierry-Mieg D, Chiu WL, Duke K, Kiraly M, Kim SK: A global analysis of Caenorhabditis elegans operons. Nature 2002, 417:851-854.
  • [3]Hurst LD, Williams EJ, Pal C: Natural selection promotes the conservation of linkage of co-expressed genes. Trends Genet 2002, 18:604-606.
  • [4]Adachi N, Lieber MR: Bidirectional gene organization: a common architectural feature of the human genome. Cell 2002, 109:807-809.
  • [5]Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM: An abundance of bidirectional promoters in the human genome. Genome Res 2004, 14:62-66.
  • [6]Yang MQ, Taylor J, Elnitski L: Comparative analyses of bidirectional promoters in vertebrates. BMC Bioinforma 2008, 9 Suppl 6:S9.
  • [7]Uwanogho DA, Yasin SA, Starling B, Price J: The intergenic region between the Mouse Recql4 and Lrrc14 genes functions as an evolutionary conserved bidirectional promoter. Gene 2010, 449:103-117.
  • [8]Bellizzi D, Dato S, Cavalcante P, Covello G, di Cianni F, Passarino G, Rose G, de Benedictis G: Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics 2007, 89:143-150.
  • [9]Keddie JS, Tsiantis M, Piffanelli P, Cella R, Hatzopoulos P, Murphy DJ: A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. Plant Mol Biol 1994, 24:327-340.
  • [10]Xie M, He Y, Gan S: Bidirectionalization of polar promoters in plants. Nat Biotechnol 2001, 19:677-679.
  • [11]Zhang C, Gai Y, Wang W, Zhu Y, Chen X, Jiang X: Construction and analysis of a plant transformation binary vector pBDGG harboring a bi-directional promoter fusing dual visible reporter genes. J Genet Genomics 2008, 35:245-249.
  • [12]Lv X, Song X, Rao G, Pan X, Guan L, Jiang X, Lu H: Construction vascular-specific expression bi-directional promoters in plants. J Biotechnol 2009, 141:104-108.
  • [13]Mitra A, Han J, Zhang ZJ, Mitra A: The intergenic region of Arabidopsis thaliana cab1 and cab2 divergent genes functions as a bidirectional promoter. Planta 2009, 229:1015-1022.
  • [14]Singh A, Sahi C, Grover A: Chymotrypsin protease inhibitor gene family in rice: genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes. Gene 2009, 428:9-19.
  • [15]Bondino HG, Valle EM: A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana. BMC Mol Biol 2009, 10:95. BioMed Central Full Text
  • [16]Shin R, Kim MJ, Paek KH: The CaTin1 (Capsicum annuum TMV-induced clone 1) and CaTin1-2 genes are linked head-to-head and share a bidirectional promoter. Plant Cell Physiol 2003, 44:549-554.
  • [17]Dhadi SR, Krom N, Ramakrishna W: Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus. Gene 2009, 429:65-73.
  • [18]Wang Q, Wan L, Li D, Zhu L, Qian M, Deng M: Searching for bidirectional promoters in Arabidopsis thaliana. BMC Bioinforma 2009, 10 Suppl 1:S29.
  • [19]Kourmpetli S, Lee K, Hemsley R, Rossignol P, Papageorgiou T, Drea S: Bidirectional promoters in seed development and related hormone/stress responses. BMC Plant Biol 2013, 13:187. BioMed Central Full Text
  • [20]Yang MQ, Elnitski LL: Diversity of core promoter elements comprising human bidirectional promoters. BMC Genomics 2008, 9 Suppl 2:S3.
  • [21]Kawai Y, Asai K, Miura Y, Inoue Y, Yamamoto M, Moriyama A, Yamamoto N, Kato T: Structure and promoter activity of the human glia maturation factor-gamma gene: a TATA-less, GC-rich and bidirectional promoter. Biochim Biophys Acta 2003, 1625:246-252.
  • [22]Li YY, Yu H, Guo ZM, Guo TQ, Tu K, Li YX: Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance. PLoS Comput Biol 2006, 2:e74.
  • [23]Conesa A, Gotz S: Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008, 2008:619832.
  • [24]Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36:3420-3435.
  • [25]Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A: Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 2009, 457:1038-1042.
  • [26]Kawabe A, Miyashita NT: Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 2003, 78:343-352.
  • [27]Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 2006, 103:11647-11652.
  • [28]International Brachypodium I: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463:763-768.
  • [29]Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, de Pamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, et al.: The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 2011, 332:960-963.
  • [30]Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science 1997, 277:1453-1462.
  • [31]Lin JM, Collins PJ, Trinklein ND, Fu Y, Xi H, Myers RM, Weng Z: Transcription factor binding and modified histones in human bidirectional promoters. Genome Res 2007, 17:818-827.
  • [32]Krom N, Ramakrishna W: Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis, and populus. Plant Physiol 2008, 147:1763-1773.
  • [33]Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, et al.: The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326:1112-1115.
  • [34]Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, et al.: The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457:551-556.
  • [35]Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR: The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 2007, 35:D883-D887.
  • [36]Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, et al.: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.
  • [37]Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E: The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 2008, 36:D1009-D1014.
  • [38]Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 1987, 6:3901-3907.
  文献评价指标  
  下载次数:13次 浏览次数:7次