| BMC Genomics | |
| CAGE-defined promoter regions of the genes implicated in Rett Syndrome | |
| Alka Saxena1  Piero Carninci5  Alistair RR Forrest5  Michela Fagiolini7  Annarita Patrizi7  Peter Zhang9  Thomas Ha9  Dan Goldowitz9  Peter Heutink5  Albin Sandelin2  Timo Lassmann6  Hideya Kawaji4  Leonard Lipovich8  Robin Andersson2  Nicolas Bertin3  Morana Vitezic2  | |
| [1] Currently at: Biomedical Research Centre at Guy’s and St Thomas’ Trust, Genomics Core Facility, Guy’s Hospital, London, UK;The Bioinformatics Center, Department of Biology and Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark;Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore;RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Wako, Japan;RIKEN Center for Life Science Technologies, Division of Genomic Technologies (DGT), Yokohama, Japan;Telethon Kids Institute, The University of Western Australia, Perth, Australia;FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA;Department of Neurology, School of Medicine, Wayne State University, Detroit, MI, USA;Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Dept of Medical Genetics, University of British Columbia, Vancouver, Canada | |
| 关键词: Promoter architecture; Transcriptomics; CAGE; Rett Syndrome; | |
| Others : 1128412 DOI : 10.1186/1471-2164-15-1177 |
|
| received in 2013-11-17, accepted in 2014-12-04, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Mutations in three functionally diverse genes cause Rett Syndrome. Although the functions of Forkhead box G1 (FOXG1), Methyl CpG binding protein 2 (MECP2) and Cyclin-dependent kinase-like 5 (CDKL5) have been studied individually, not much is known about their relation to each other with respect to expression levels and regulatory regions. Here we analyzed data from hundreds of mouse and human samples included in the FANTOM5 project, to identify transcript initiation sites, expression levels, expression correlations and regulatory regions of the three genes.
Results
Our investigations reveal the predominantly used transcription start sites (TSSs) for each gene including novel transcription start sites for FOXG1. We show that FOXG1 expression is poorly correlated with the expression of MECP2 and CDKL5. We identify promoter shapes for each TSS, the predicted location of enhancers for each gene and the common transcription factors likely to regulate the three genes. Our data imply Polycomb Repressive Complex 2 (PRC2) mediated silencing of Foxg1 in cerebellum.
Conclusions
Our analyses provide a comprehensive picture of the regulatory regions of the three genes involved in Rett Syndrome.
【 授权许可】
2014 Vitezic et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150223022902936.pdf | 2106KB | ||
| Figure 5. | 47KB | Image | |
| Figure 4. | 69KB | Image | |
| Figure 3. | 83KB | Image | |
| Figure 2. | 64KB | Image | |
| Figure 1. | 143KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999, 23(2):185-188.
- [2]Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I, Longo I, Mari F, Broccoli V, Zappella M, Renieri A: FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet 2008, 83(1):89-93.
- [3]Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, Archer H, Evans J, Clarke A, Pelka GJ, Tam PP, Watson C, Lahooti H, Ellaway CJ, Bennetts B, Leonard H, Gecz J: Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 2004, 75(6):1079-1093.
- [4]Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK, RettSearch Consortium: Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol 2010, 68(6):944-950.
- [5]Archer HL, Evans J, Edwards S, Colley J, Newbury-Ecob R, O'Callaghan F, Huyton M, O'Regan M, Tolmie J, Sampson J, Clarke A, Osborne J: CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 2006, 43(9):729-734.
- [6]Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC: Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 2003, 278(34):32181-32188.
- [7]Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998, 19(2):187-191.
- [8]Nan X, Tate P, Li E, Bird A: DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 1996, 16(1):414-421.
- [9]Nikitina T, Shi X, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Woodcock CL: Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol Cell Biol 2007, 27(3):864-877.
- [10]Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY: MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008, 320(5880):1224-1229.
- [11]Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393(6683):386-389.
- [12]Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM: Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci U S A 2007, 104(49):19416-19421.
- [13]Nan X, Campoy FJ, Bird A: MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997, 88(4):471-481.
- [14]Meehan RR, Lewis JD, Bird AP: Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 1992, 20(19):5085-5092.
- [15]Chahrour M, Zoghbi HY: The story of Rett syndrome: from clinic to neurobiology. Neuron 2007, 56(3):422-437.
- [16]Ramocki MB, Peters SU, Tavyev YJ, Zhang F, Carvalho CM, Schaaf CP, Richman R, Fang P, Glaze DG, Lupski JR, Zoghbi HY: Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol 2009, 66(6):771-782.
- [17]Ramocki MB, Tavyev YJ, Peters SU: The MECP2 duplication syndrome. Am J Med Genet A 2012, 152A(5):1079-1088.
- [18]Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY: Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002, 11(2):115-124.
- [19]Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 2010, 37(4):457-468.
- [20]Sonderegger CK, Vogt PK: Binding of the corepressor TLE1 to Qin enhances Qin-mediated transformation of chicken embryo fibroblasts. Oncogene 2003, 22(12):1749-1757.
- [21]Rusconi L, Salvatoni L, Giudici L, Bertani I, Kilstrup-Nielsen C, Broccoli V, Landsberger N: CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J Biol Chem 2008, 283(44):30101-30111.
- [22]Williamson SL, Giudici L, Kilstrup Nielsen C, Gold W, Pelka GJ, Tam PP, Grimm A, Prodi D, Landsberger N, Christodoulou J: A novel transcript of cyclin-dependent kinase-like 5 (CDKL5) has an alternative C-terminus and is the predominant transcript in brain. Hum Genet 2012, 131(2):187-200.
- [23]Montini E, Andolfi G, Caruso A, Buchner G, Walpole SM, Mariani M, Consalez G, Trump D, Ballabio A, Franco B: Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region. Genomics 1998, 51(3):427-433.
- [24]Kilstrup-Nielsen C, Rusconi L, La Montanara P, Ciceri D, Bergo A, Bedogni F, Landsberger N: What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast 2012, 2012:728267.
- [25]Roth M, Bonev B, Lindsay J, Lea R, Panagiotaki N, Houart C, Papalopulu N: FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation. Development 2010, 137(9):1553-1562.
- [26]Yao J, Lai E, Stifani S: The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription. Mol Cell Biol 2001, 21(6):1962-1972.
- [27]Tao J, Hu K, Chang Q, Wu H, Sherman NE, Martinowich K, Klose RJ, Schanen C, Jaenisch R, Wang W, Sun YE: Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci U S A 2009, 106(12):4882-4887.
- [28]Carouge D, Host L, Aunis D, Zwiller J, Anglard P: CDKL5 is a brain MeCP2 target gene regulated by DNA methylation. Neurobiol Dis 2010, 38(3):414-424.
- [29]Kalscheuer VM, Tao J, Donnelly A, Hollway G, Schwinger E, Kubart S, Menzel C, Hoeltzenbein M, Tommerup N, Eyre H, Harbord M, Haan E, Sutherland GR, Ropers HH, Gécz J: Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet 2003, 72(6):1401-1411.
- [30]Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N: CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 2005, 14(14):1935-1946.
- [31]Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Lassmann T, Itoh M, Summers KM, Suzuki H, Daub CO, Kawai J, Heutink P, Hide W, Freeman TC, Lenhard B, Bajic VB, Taylor MS, Makeev VJ, Sandelin A, Hume DA, Carninci P, Hayashizaki Y, FANTOM Consortium and the RIKEN PMI and CLST (DGT): A promoter-level mammalian expression atlas. Nature 2014, 507(7493):462-470.
- [32]Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T, Gilbert DM, Groudine M, Bender M, Kaul R, Canfield T, Giste E, Johnson A, Zhang M, Balasundaram G, Byron R, Roach V, Sabo PJ, Sandstrom R, Stehling AS, Thurman RE, Weissman SM, Cayting P, Hariharan M, Lian J, Cheng Y, Landt SG, Ma Z, Wold BJ, Dekker J, Crawford GE, et al.: An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 2012, 13(8):418.
- [33]Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 2002, 35(2):243-254.
- [34]Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, et al.: An atlas of active enhancers across human cell types and tissues. Nature 2014, 507(7493):455-461.
- [35]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2012, 26(6):841-842.
- [36]Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Raney BJ, Pohl A, Malladi VS, Li CH, Lee BT, Learned K, Kirkup V, Hsu F, Heitner S, Harte RA, Haeussler M, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Dreszer TR, Diekhans M, Cline MS, Clawson H, Barber GP: The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 2013, 41(Database issue):D64-D69.
- [37]Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000, 302(1):205-217.
- [38]Arnold P, Erb I, Pachkov M, Molina N, van Nimwegen E: MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics 2012, 28(4):487-494.
- [39]Dong X, Greven MC, Kundaje A, Djebali S, Brown JB, Cheng C, Gingeras TR, Gerstein M, Guigo R, Birney E, Weng Z: Modeling gene expression using chromatin features in various cellular contexts. Genome Biol 2012, 13(9):R53. BioMed Central Full Text
- [40]Saxena A, Carninci P: Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. Bioessays 2011, 33(11):830-839.
- [41]Alvarez-Saavedra M, Carrasco L, Sura-Trueba S, Demarchi Aiello V, Walz K, Neto JX, Young JI: Elevated expression of MeCP2 in cardiac and skeletal tissues is detrimental for normal development. Hum Mol Genet 2010, 19(11):2177-2190.
- [42]Hanashima C, Shen L, Li SC, Lai E: Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms. J Neurosci 2002, 22(15):6526-6536.
- [43]Seoane J, Le HV, Shen L, Anderson SA, Massague J: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004, 117(2):211-223.
- [44]Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 2010, 107(50):21931-21936.
- [45]Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473(7345):43-49.
- [46]Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459(7243):108-112.
- [47]Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J: A unique chromatin signature uncovers early developmental enhancers in humans. Nature 2011, 470(7333):279-283.
- [48]Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, et al.: Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 2006, 38(6):626-635.
- [49]Pachkov M, Balwierz PJ, Arnold P, Ozonov E, van Nimwegen E: SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates. Nucleic Acids Res 2013, 41(Database issue):D214-D220.
- [50]Ellaway CJ, Ho G, Bettella E, Knapman A, Collins F, Hackett A, McKenzie F, Darmanian A, Peters GB, Fagan K, Christodoulou J: 14q12 microdeletions excluding FOXG1 give rise to a congenital variant Rett syndrome-like phenotype. Eur J Hum Genet 2013, 21(5):522-527.
- [51]Saxena A, de Lagarde D, Leonard H, Williamson SL, Vasudevan V, Christodoulou J, Thompson E, MacLeod P, Ravine D: Lost in translation: translational interference from a recurrent mutation in exon 1 of MECP2. J Med Genet 2006, 43(6):470-477.
- [52]Young MD, Willson TA, Wakefield MJ, Trounson E, Hilton DJ, Blewitt ME, Oshlack A, Majewski IJ: ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res 2011, 39(17):7415-7427.
- [53]Balmer D, Goldstine J, Rao YM, LaSalle JM: Elevated methyl-CpG-binding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation. J Mol Med 2003, 81(1):61-68.
- [54]Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME: Widespread transcription at neuronal activity-regulated enhancers. Nature 2010, 465(7295):182-187.
- [55]Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest AR, Carninci P, Biffo S, Stupka E, Gustincich S: Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 2012, 491(7424):454-457.
- [56]Kriaucionis S, Bird A: The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res 2004, 32(5):1818-1823.
- [57]Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, Jones JR, Scherer SW, Schanen NC, Friez MJ, Vincent JB, Minassian BA: A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 2004, 36(4):339-341.
PDF