期刊论文详细信息
BMC Genomics
Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417
Peter A. H. M. Bakker1  Corné M. J. Pieterse1  Jan Tommassen3  Christos Zamioudis1  Ioannis A. Stringlis1  Marcel C. van Verk2  Roeland L. Berendsen1 
[1] Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands;Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands;Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
关键词: Protein secretion system;    Antibiotics;    Lipopolysaccharides;    Siderophores;    Induced systemic resistance;    Plant growth-promoting rhizobacteria;   
Others  :  1222462
DOI  :  10.1186/s12864-015-1632-z
 received in 2015-01-15, accepted in 2015-05-15,  发布年份 2015
【 摘 要 】

Background

Plant growth-promoting rhizobacteria (PGPR) can protect plants against pathogenic microbes through a diversity of mechanisms including competition for nutrients, production of antibiotics, and stimulation of the host immune system, a phenomenon called induced systemic resistance (ISR). In the past 30 years, the Pseudomonas spp. PGPR strains WCS358, WCS374 and WCS417 of the Willie Commelin Scholten (WCS) collection have been studied in detail in pioneering papers on the molecular basis of PGPR-mediated ISR and mechanisms of biological control of soil-borne pathogens via siderophore-mediated competition for iron.

Results

The genomes of the model WCS PGPR strains were sequenced and analyzed to unearth genetic cues related to biological questions that surfaced during the past 30 years of functional studies on these plant-beneficial microbes. Whole genome comparisons revealed important novel insights into iron acquisition strategies with consequences for both bacterial ecology and plant protection, specifics of bacterial determinants involved in plant-PGPR recognition, and diversity of protein secretion systems involved in microbe-microbe and microbe-plant communication. Furthermore, multi-locus sequence alignment and whole genome comparison revealed the taxonomic position of the WCS model strains within the Pseudomonas genus. Despite the enormous diversity of Pseudomonas spp. in soils, several plant-associated Pseudomonas spp. strains that have been isolated from different hosts at different geographic regions appear to be nearly isogenic to WCS358, WCS374, or WCS417. Interestingly, all these WCS look-a-likes have been selected because of their plant protective or plant growth-promoting properties.

Conclusions

The genome sequences of the model WCS strains revealed that they can be considered representatives of universally-present plant-beneficial Pseudomonas spp. With their well-characterized functions in the promotion of plant growth and health, the fully sequenced genomes of the WCS strains provide a genetic framework that allows for detailed analysis of the biological mechanisms of the plant-beneficial traits of these PGPR. Considering the increasing focus on the role of the root microbiome in plant health, functional genomics of the WCS strains will enhance our understanding of the diversity of functions of the root microbiome.

【 授权许可】

   
2015 Berendsen et al.

附件列表
Files Size Format View
Fig. 7. 57KB Image download
Fig. 6. 46KB Image download
Fig. 5. 19KB Image download
Fig. 4. 107KB Image download
Fig. 3. 38KB Image download
Fig. 2. 131KB Image download
Fig. 1. 144KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012; 28:489-521.
  • [2]Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012; 17:478-86.
  • [3]Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 2013; 37:634-63.
  • [4]Venturi V, Da Silva D. Incoming pathogens team up with harmless ‘resident’ bacteria. Trends Microbiol. 2012; 20:160-4.
  • [5]Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ. The rhizosphere revisited: root microbiomics. Front Plant Sci. 2013; 4:165.
  • [6]Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F et al.. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012; 488:91-5.
  • [7]Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM et al.. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011; 332:1097-100.
  • [8]Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol. 2014; 5:148.
  • [9]Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S et al.. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012; 488:86-90.
  • [10]Kloepper JW, Ryu C-M, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 2004; 94:1259-66.
  • [11]Lugtenberg B, Kamilova F. Plant-Growth-Promoting Rhizobacteria. Annu Rev Microbiol. 2009; 63:541-56.
  • [12]Mulet M, García-Valdés E, Lalucat J. Phylogenetic affiliation of Pseudomonas putida biovar A and B strains. Res Microbiol. 2013; 164:351-9.
  • [13]Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol. 2014; 52:347-75.
  • [14]Weller DM. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology. 2007; 97:250-6.
  • [15]Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 2009; 3:977-91.
  • [16]Weller DM, Raaijmakers JM, Gardener B, Thomashow LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol. 2002; 40:309-48.
  • [17]Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005; 3:307-19.
  • [18]Schippers B, Roosje GS. Hundred years of history and the future of the foundation ‘Willie Commelin Scholten Phytopathological Laboratory’. Eur J Plant Pathol. 1997; 103:667-71.
  • [19]Faasse PE. In splendid isolation: A history of the Willie Commelin Scholten Phytopathology Laboratory 1894–1992. History of Science and Scholarship in the Netherlands. KNAW Press, Amsterdam; 2008.
  • [20]Geels FP, Schippers B. Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Phytopatholog Z. 1983; 108:193-206.
  • [21]Lamers JG, Schippers B, Geels FP. Soil-borne diseases of wheat in the Netherlands and results of seed bacterization with Pseudomonas against Gaeumannomyces graminis var. tritici. In: Cereal breeding related to integrated cereal production. Jorna ML, Slootmaker LAJ, editors. PUDOC, Wageningen, the Netherlands; 1988: p.134-9.
  • [22]Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B. The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol. 1986; 92:249-56.
  • [23]Duijff BJ, Bakker PAHM, Schippers B. Suppression of fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Technol. 1994; 4:279-88.
  • [24]De Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 2008; 148:1996-2012.
  • [25]Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM et al.. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology. 1996; 86:149-55.
  • [26]Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM. Dose–response relationships in biological-control of Fusarium-wilt of radish by Pseudomonas spp. Phytopathology. 1995; 85:1075-81.
  • [27]Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol. 1992; 58:2978-82.
  • [28]Duijff BJ, Recorbet G, Bakker PAHM, Loper JE, Lemanceau P. Microbial antagonism at the root level is involved in suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology. 1999; 89:1073-9.
  • [29]Lemanceau P, Expert D, Gaymard F, Bakker PAHM, Briat JF. Role of iron in plant-microbe interactions. In: Van Loon LC, editor. Plant Innate Immunity. Advances in Botanical Research. vol 51: Amsterdam: Elsevier; 2009. p. 491–549.
  • [30]Cornelis P. Iron transport systems and iron homeostasis in Pseudomonas. In: Iron uptake in bacteria with emphasis on E. coli and Pseudomonas. SpringerBriefs in Molecular Science. Braun V, Hantke K, Cornelis P, Chakraborty R, editors. Springer, Netherlands; 2013: p.67-89.
  • [31]Loper JE, Henkels MD. Utilization of Heterologous Siderophores Enhances Levels of Iron Available to Pseudomonas putida in the Rhizosphere. Appl Environ Microbiol. 1999; 65:5357-63.
  • [32]Hartney S, Mazurier S, Girard M, Mehnaz S, Davis E, Gross H et al.. Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5. J Bacteriol. 2013; 195:765-76.
  • [33]Bakker PAHM, Van Peer R, Schippers B. Specificity of siderophore receptors and biocontrol by Pseudomonas spp. In: Biological control of soil-borne plant pathogens. Hornby D, editor. CAB international, Wallingford, UK; 1990: p.131-42.
  • [34]Van Peer R, Niemann GJ, Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas strain WCS417r. Phytopathology. 1991; 81:728-34.
  • [35]Alström S. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere Pseudomonads. J Gen Appl Microbiol. 1991; 37:495-501.
  • [36]Wei G, Kloepper JW, Tuzun S. Induction of systemic resistance of cucumber to Colletrotichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology. 1991; 81:1508-12.
  • [37]Ton J, Davison S, Van Wees SCM, Van Loon LC, Pieterse CMJ. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 2001; 125:652-61.
  • [38]Ton J, Pieterse CMJ, Van Loon LC. Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Mol Plant-Microbe Interact. 1999; 12:911-8.
  • [39]Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, Pel MJC et al.. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol. 2008; 146:1293-304.
  • [40]Zamioudis C, Hanson J, Pieterse CMJ. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 2014; 204:368-79.
  • [41]Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H et al.. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998; 10:1571-80.
  • [42]Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell. 1996; 8:1225-37.
  • [43]Fu ZQ, Dong X. Systemic acquired resistance: Turning local infection into global defense. Annu Rev Plant Biol. 2013; 64:839-63.
  • [44]Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol. 2005; 6:177-85.
  • [45]Weller DM, Mavrodi DV, van Pelt JA, Pieterse CMJ, van Loon LC, Bakker PAHM. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology. 2012; 102:403-12.
  • [46]De Vleesschauwer D, Höfte M. Rhizobacteria-Induced Systemic Resistance. In: Van Loon LC, editor. Plant Innate Immunity. Advances in Botanical Research, vol 51: Amsterdam: Elsevier; 2009. p. 491–549.
  • [47]Bakker PAHM, Pieterse CMJ, Van Loon LC. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology. 2007; 97:239-43.
  • [48]Van Wees SCM, Pieterse CMJ, Trijssenaar A, Westende YAM V ‘t, Hartog F, Van Loon LC. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact. 1997; 10:716-24.
  • [49]Rudrappa T, Czymmek KJ, Paré PW, Bais HP. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 2008; 148:1547-56.
  • [50]Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D et al.. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell. 2010; 22:973-90.
  • [51]Dos Santos V, Heim S, Moore E, Strätz M, Timmis K. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol. 2004; 6:1264-86.
  • [52]Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT et al.. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 2012; 8:e1002784.
  • [53]Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol. 2010; 12:1513-30.
  • [54]De Weger LA, van Boxtel R, van der Burg B, Gruters R, Geels FP, Schippers B et al.. Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp. J Bacteriol. 1986; 165:585-94.
  • [55]Duijff BJ, Erkelens A, Bakker PAHM, Schippers B. Influence of pH on suppression of fusarium wilt of carnation by Pseudomonas fluorescens WCS417r. J Phytopathol. 1995; 143:217-22.
  • [56]Matilla MA, Pizarro-Tobias P, Roca A, Fernández M, Duque E, Molina L et al.. Complete genome of the plant growth-promoting rhizobacterium Pseudomonas putida BIRD-1. J Bacteriol. 2011; 193:1290.
  • [57]Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 2011; 35:299-323.
  • [58]Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP et al.. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Env Microbiol. 2002; 4:799-808.
  • [59]Udaondo Z, Duque E, Fernández M, Molina L, De la Torre J, Bernal P et al.. Analysis of solvent tolerance in Pseudomonas putida DOT-T1E based on its genome sequence and a collection of mutants. FEBS Lett. 2012; 586:2932-8.
  • [60]Mathimaran N, Srivastava R, Wiemken A, Sharma A, Boller T. Genome sequences of two plant growth-promoting fluorescent Pseudomonas strains, R62 and R81. J Bacteriol. 2012; 194:3272-3.
  • [61]Ye L, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S et al.. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 Strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens. PLoS One. 2014; 9:e110038.
  • [62]Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A. 2009; 106:19126-31.
  • [63]Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A. 2005; 102:2567-72.
  • [64]Wilson M, Lindow S. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology. 1993;83:117–123.
  • [65]Langille MGI, Brinkman FSL. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics. 2009; 25:664-5.
  • [66]Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011; 35:957-76.
  • [67]Lemanceau P, Samson R, editors. Relations entre quelques caractéristiques in vitro de 10 Pseudomonas fluorescents et leur effet sur la croissance du haricot (Phaseolus vulgaris). Les antagonismes microbiens, 24eme colloque de la SFP. Bordeaux, France: INRA; 1983.
  • [68]Budzikiewicz H. Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Prog Ch Org Nat Prod. 2004; 87:81-237.
  • [69]Fuchs R, Schafer M, Geoffroy V, Meyer J-M. Siderotyping a powerful tool for the characterization of pyoverdines. Curr Top Med Chem. 2001; 1:31-57.
  • [70]Djavaheri M, Mercado-Blanco J, Versluis C, Meyer JM, Van Loon LC, Bakker PAHM. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. Microbiol Open. 2012; 1:311-25.
  • [71]Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev. 2010; 34:1037-62.
  • [72]Hartney S, Mazurier S, Kidarsa T, Quecine M, Lemanceau P, Loper J. TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. Biometals. 2011; 24:193-213.
  • [73]Schwyn B, Neilands J. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987; 160:47-56.
  • [74]Marugg JD, van Spanje M, Hoekstra W, Schippers B, Weisbeek PJ. Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. J Bacteriol. 1985; 164:563-70.
  • [75]Duijff BJ, Meijer JW, Bakker PAHM, Schippers B. Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth J Plant Pathol. 1993; 99:277-89.
  • [76]Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM. Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol. 2001; 183:1909-20.
  • [77]Ratledge C, Macham LP, Brown KA, Marshall BJ. Iron transport in Mycobacterium smegmatis: A restricted role for salicylic acid in the extracellular environment. Biochim Biophys. 1974; 372:39-51.
  • [78]Chipperfield J, Ratledge C. Salicylic acid is not a bacterial siderophore: a theoretical study. Biometals. 2000; 13:165-8.
  • [79]Bakker PAHM, Ran LX, Mercado-Blanco J. Rhizobacterial salicylate production provokes headaches! Plant Soil. 2014; 364:1-16.
  • [80]Matthijs S, Laus G, Meyer J-M, Abbaspour-Tehrani K, Schäfer M, Budzikiewicz H et al.. Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals. 2009; 22:951-64.
  • [81]Sattely ES, Walsh CT. A latent oxazoline electrophile for N − O − C bond formation in pseudomonine biosynthesis. J Am Chem Soc. 2008; 130:12282-4.
  • [82]Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep. 2009; 26:1408-46.
  • [83]Ferguson A, Amezcua C, Halabi N, Chelliah Y, Rosen M, Ranganathan R et al.. Signal transduction pathway of TonB-dependent transporters. Proc Natl Acad Sci U S A. 2007; 104:513-8.
  • [84]Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E. TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol. 2009; 7:68.
  • [85]Erbs G, Newman M-A. The role of lipopolysaccharides in induction of plant defence responses. Mol Plant Pathol. 2003; 4:421-5.
  • [86]King J, Kocíncová D, Westman E, Lam J. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun. 2009; 15:261-312.
  • [87]Van Peer R, Schippers B. Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol. 1992; 98:129-39.
  • [88]Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B. Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology. 1995; 85:1021-7.
  • [89]Raymond CK, Sims EH, Kas A, Spencer DH, Kutyavin TV, Ivey RG et al.. Genetic Variation at the O-Antigen Biosynthetic Locus in Pseudomonas aeruginosa. J Bacteriol. 2002; 184:3614-22.
  • [90]Roberts MW, Rabinowitz JC. The effect of Escherichia coli ribosomal protein S1 on the translational specificity of bacterial ribosomes. J Biol Chem. 1989; 264:2228-35.
  • [91]De Weger LA, Jann B, Jann K, Lugtenberg B. Lipopolysaccharides of Pseudomonas spp. that stimulate plant growth: composition and use for strain identification. J Bacteriol. 1987; 169:1441-6.
  • [92]Chen H, Guo Z, Liu H-w. Biosynthesis of yersiniose: attachment of the two-carbon branched-chain is catalyzed by a thiamine pyrophosphate-dependent flavoprotein. J Am Chem Soc. 1998; 120:11796-7.
  • [93]Cunneen MM, Pacinelli E, Song WC, Reeves PR. Genetic analysis of the O-antigen gene clusters of Yersinia pseudotuberculosis O:6 and O:7. Glycobiology. 2011; 21:1140-6.
  • [94]Kondakova AN, Drutskaya MS, Shashkov AS, Nedospasov SA, Akimov VN, Arbatsky NP et al.. Structure of the O-polysaccharide of Pseudomonas mandelii CYar1 containing 3,6-dideoxy-4-C-[(S)-1-hydroxyethyl]-D-xylo-hexose (yersiniose A). Carbohydr Res. 2013; 381:138-41.
  • [95]Kneidinger B, O’Riordan K, Li J, Brisson J-R, Lee JC, Lam JS. Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-d-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5: Implications for the UDP-N-Acetyl-l-Fucosamine biosynthetic pathway. J Biol Chem. 2003; 278:3615-27.
  • [96]Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 2007; 175:731-42.
  • [97]Audenaert K, Pattery T, Cornelis P, Höfte M. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic scid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact. 2002; 15:1147-56.
  • [98]Iavicoli A, Boutet E, Buchala A, Métraux J-P. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact. 2003; 16:851-8.
  • [99]Dubern J-F, Coppoolse E, Stiekema W, Bloemberg G. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445. Microbiol-UK. 2008; 154:2070-83.
  • [100]Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE et al.. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol. 2003; 51:97-113.
  • [101]Parret A, De Mot R. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gamma-proteobacteria. Trends Microbiol. 2002; 10:107-12.
  • [102]Van Heel A, De Jong A, Montalbán-López M, Kok J, Kuipers O. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013; 41:53.
  • [103]Kapitein N, Mogk A. Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 2013; 16:52-8.
  • [104]Filloux A. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front Microbiol. 2011; 2:155.
  • [105]Guzzo J, Duong F, Wandersman C, Murgier M, Lazdunski A. The secretion genes of Pseudomonas aeruginosa alkaline protease are functionally related to those of Erwinia chrysanthemi proteases and Escherichia coli α-haemolysin. Mol Microbiol. 1991; 5:447-53.
  • [106]Létoffé S, Redeker V, Wandersman C. Isolation and characterization of an extracellular haem-binding protein from Pseudomonas aeruginosa that shares function and sequence similarities with the Serratia marcescens HasA haemophore. Mol Microbiol. 1998; 28:1223-34.
  • [107]De Groot A, Filloux A, Tommassen J. Conservation of xcp genes, involved in the two-step protein secretion process, in different Pseudomonas species and other gram-negative bacteria. Mol Gen Genet. 1991; 229:278-84.
  • [108]Putker F, Tommassen-van Boxtel R, Stork M, Rodríguez-Herva J, Koster M, Tommassen J. The type II secretion system (Xcp) of Pseudomonas putida is active and involved in the secretion of phosphatases. Environ Microbiol. 2013; 15:2658-71.
  • [109]De Vrind J, De Groot A, Brouwers GJ, Tommassen J, De Vrind-De JE. Identification of a novel Gsp-related pathway required for secretion of the manganese-oxidizing factor of Pseudomonas putida strain GB-1. Mol Microbiol. 2003; 47:993-1006.
  • [110]Filloux A, Bleves S, Van Ulsen P, Tommassen J. Protein secretion mechanisms in Pseudomonas. In: Pseudomonas . Ramos J-L, editor. Kluwer, New york; 2004: p.749-91.
  • [111]De Groot A, Heijnen I, De Cock H, Filloux A, Tommassen J. Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358. J Bacteriol. 1994; 176:642-50.
  • [112]Preston GM, Bertrand N, Rainey PB. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol. 2001; 41:999-1014.
  • [113]DebRoy S, Thilmony R, Kwack Y-B, Nomura K, He SY. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A. 2004; 101:9927-32.
  • [114]Guttman DS, Vinatzer BA, Sarkar SF, Ranall MV, Kettler G, Greenberg JT. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science. 2002; 295:1722-6.
  • [115]Petnicki-Ocwieja T, Schneider DJ, Tam VC, Chancey ST, Shan L, Jamir Y et al.. Genome wide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A. 2002; 99:7652-7.
  • [116]Kida Y, Taira J, Yamamoto T, Higashimoto Y, Kuwano K. EprS, an autotransporter protein of Pseudomonas aeruginosa, possessing serine protease activity induces inflammatory responses through protease-activated receptors. Cell Microbiol. 2013;1.
  • [117]Campos IB, Darrieux M, Ferreira DM, Miyaji EN, Silva DA, Arêas APM, et al. Nasal immunization of mice with Lactobacillus casei expressing the Pneumococcal Surface Protein A: induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge. Microbes Infect. 2008;10:481–8.
  • [118]Luckett JCA, Darch O, Watters C, AbuOun M, Wright V, Paredes-Osses E et al. A Novel Virulence strategy for Pseudomonas aeruginosa mediated by an autotransporter with arginine-specific aminopeptidase activity. PLoS Pathog. 2012; 8:e1002854.
  • [119]Wilhelm S, Tommassen J, Jaeger K-E. A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol. 1999; 181:6977-86.
  • [120]Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger K-E. The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol. 2007; 189:6695-703.
  • [121]Ruhe ZC, Low DA, Hayes CS. Bacterial contact-dependent growth inhibition. Trends Microbiol. 2013; 21:230-7.
  • [122]Salacha R, Kovacic F, Brochier-Armanet C, Wilhelm S, Tommassen J, Filloux A, et al. The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system. Environ Microbiol. 2010;12:1498–512.
  • [123]Banerji S, Flieger A. Patatin-like proteins: a new family of lipolytic enzymes present in bacteria? Microbiol-UK. 2004; 150:522-5.
  • [124]Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe. 2014; 15:9-21.
  • [125]Barret M, Egan F, Fargier E, Morrissey J, O’Gara F. Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiol-UK. 2011; 157:1726-39.
  • [126]Silby M, Winstanley C, Godfrey S, Levy S, Jackson R. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 2011; 35:652-80.
  • [127]De Souza J, De Boer M, De Waard P, Van Beek T, Raaijmakers JM. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol. 2003; 69:7161-72.
  • [128]Curtis TP, Sloan WT, Scannell JW. Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A. 2002; 99:10494-9.
  • [129]Torsvik V, Øvreås L, Thingstad TF. Prokaryotic diversity - Magnitude, dynamics, and controlling factors. Science. 2002; 296:1064-6.
  • [130]Raaijmakers JM, Van der Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B. Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol. 1995; 41:126-35.
  • [131]Ran LC, Xiang ML, Zhou B, Bakker PAHM. Siderophores are the main determinants of fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla. Acta Phytopathol Sinica. 2005; 35:6-12.
  • [132]Van Loon LC, Bakker PAHM, Van der Heijdt W, Wendehenne D, Pugin A. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact. 2008; 21:1609-21.
  • [133]Van de Mortel J, De Vos R, Dekkers E, Pineda A, Guillod L, Bouwmeester K, et al. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol. 2012;160:2173–88.
  • [134]Bull CT, Weller DM, Thomashow LS. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens Strain 2–79. Phytopathology. 1991; 81:954-9.
  • [135]Raaijmakers JM, Bonsall RE, Weller DM. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology. 1999; 89:470-5.
  • [136]Anderson L, Stockwell VO, Loper JE. An extracellular protease of Pseudomonas fluorescens inactivates antibiotics of Pantoea agglomerans. Phytopathology. 2004; 94:1228-34.
  • [137]Rezzonico F, Binder C, Défago G, Moënne-Loccoz Y. The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic chromista Pythium ultimum and promotes cucumber protection. Mol Plant-Microbe Interact. 2005; 18:991-1001.
  • [138]Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact. 2012; 25:139-50.
  • [139]Mavrodi DV, Joe A, Mavrodi OV, Hassan KA, Weller DM, Paulsen IT, et al. Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J Bacteriol. 2011;193:177–89.
  • [140]Russell A, LeRoux M, Hathazi K, Agnello D, Ishikawa T, Wiggins P, et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature. 2013;496:508–12.
  • [141]Hood R, Singh P, Hsu F, Güvener T, Carl M, Trinidad R, et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010;7:25–37.
  • [142]Pel MJC, Van Dijken AJH, Bardoel BW, Seidl MF, Van der Ent S, Van Strijp JAG, et al. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol Plant-Microbe Interact. 2014;27:603–10.
  • [143]Bardoel BW, Van der Ent S, Pel MJC, Tommassen J, Pieterse CMJ, Van Kessel KPM, et al. Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog. 2011;7:e1002206.
  • [144]Angiuoli S, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. Omics. 2008;12:137–41.
  • [145]Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotech. 2005;23:873–8.
  • [146]Silby M, Cerdeno-Tarraga A, Vernikos G, Giddens S, Jackson R, Preston G, et al. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009;10:R51.
  • [147]Darling AE, Mau B, Perna NT. ProgressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010; 5:e11147.
  • [148]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:290–301.
  • [149]Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, et al. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013;41:204–12.
  • [150]Bachmann BO, Ravel J. In silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Method Enzymol. 2009; 458:181-217.
  • [151]Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 2011; 39:362-7.
  • [152]King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954; 44:301-7.
  • [153]Verhagen BWM, Trotel-Aziz P, Couderchet M, Höfte M, Aziz A. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot. 2010; 61:249-60.
  • [154]Nel B, Steinberg C, Labuschagne N, Viljoen A. The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing fusarium wilt of banana. Plant Pathol. 2006; 55:217–23.
  • [155]Bigirimana J, Höfte M. Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica. 2002; 30:159-68.
  • [156]Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P. Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium. Eur J Plant Pathol. 1998; 104:903-10.
  • [157]Weisbeek PJ, Van der Hofstad GAJM, Schippers B, Marugg JD. Genetic analysis of the iron-uptake system of two plant growth-promoting Pseudomonas strains. In: Iron, siderophores and plant diseases. 2nd ed. Swinburne TR, editor. Plenum Press, New York; 1986: p.299-313.
  • [158]Howell C, Stipanovic R. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology. 1979; 69:480-2.
  • [159]Bitter W, Marugg JD, de Weger LA, Tommassen J, Weisbeek PJ. The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB-dependent Escherichia coli receptors and specificity of the protein. Mol Microbiol. 1991; 5:647-55.
  • [160]Koster M, Ovaa W, Bitter W, Weisbeek PJ. Multiple outer membrane receptors for uptake of ferric pseudobactins in Pseudomonas putida WCS358. Mol Gen Genet. 1995; 248:735-43.
  • [161]Koster M, Van Klompenburg W, Bitter W, Leong J, Weisbeek PJ. Role for the outer membrane ferric siderophore receptor PupB in signal transduction across the bacterial cell envelope. EMBO J. 1994; 13:2805-13.
  文献评价指标  
  下载次数:136次 浏览次数:28次