| BMC Microbiology | |
| The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis | |
| Alain Dufour1  Alexis Bazire1  | |
| [1] Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France | |
| 关键词: AlgU; Pseudomonas aeruginosa; Rhamnolipid; RhlG; | |
| Others : 820491 DOI : 10.1186/1471-2180-14-160 |
|
| received in 2014-03-19, accepted in 2014-06-12, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Pseudomonas aeruginosa produces rhamnolipid biosurfactants involved in numerous phenomena including virulence. The transcriptional study of the rhlAB operon encoding two key enzymes for rhamnolipid synthesis led to the discovery of the quorum sensing system RhlRI. The latter positively controls the transcription of rhlAB, as well as of rhlC, which is required for di-rhamnolipid synthesis. The rhlG gene encodes an NADPH-dependent β-ketoacyl reductase. Although it was reported to be required for the biosynthesis of the fatty acid part of rhamnolipids, its function in rhamnolipid synthesis was later questioned. The rhlG transcription and its role in rhamnolipid production were investigated here.
Results
Using 5′-RACE PCR, a luxCDABE-based transcriptional fusion, and quantitative reverse transcription-PCR, we confirmed two previously identified σ70- and σ54-dependent promoters and we identified a third promoter recognized by the extra-cytoplasmic function sigma factor AlgU. rhlG was inversely regulated compared to rhlAB and rhlC: the rhlG transcription was down-regulated in response to N-butyryl-L-homoserine lactone, the communication molecule of the RhlRI system, and was induced by hyperosmotic stress in an AlgU-dependent manner. Consistently with this transcriptional pattern, the single or double deletions of rhlG and PA3388, which forms an operon with rhlG, did not dramatically impair rhamnolipid synthesis.
Conclusion
This first detailed study of rhlG transcription reveals a complex regulation involving three sigma factors and N-butyryl-L-homoserine lactone. We furthermore present evidences that RhlG does not play a key role in rhamnolipid synthesis.
【 授权许可】
2014 Bazire and Dufour; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140712044127867.pdf | 624KB | ||
| Figure 3. | 105KB | Image | |
| Figure 2. | 103KB | Image | |
| Figure 1. | 59KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Reis RS, Pereira AG, Neves BC, Freire DM: Gene regulation of rhamnolipid production in Pseudomonas aeruginosa–a review. Bioresour Technol 2011, 102(11):6377-6384.
- [2]Abdel-Mawgoud AM, Lepine F, Deziel E: Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 2010, 86(5):1323-1336.
- [3]Zhu K, Rock CO: RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 2008, 190(9):3147-3154.
- [4]Campos-Garcia J, Caro AD, Najera R, Miller-Maier RM, Al-Tahhan RA, Soberon-Chavez G: The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 1998, 180(17):4442-4451.
- [5]Soberon-Chavez G, Aguirre-Ramirez M, Sanchez R: The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. J Ind Microbiol Biotechnol 2005, 32(11–12):675-677.
- [6]Miller DJ, Zhang YM, Rock CO, White SW: Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 2006, 281(26):18025-18032.
- [7]Pearson JP, Pesci EC, Iglewski BH: Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997, 179(18):5756-5767.
- [8]Ochsner UA, Fiechter A, Reiser J: Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 1994, 269(31):19787-19795.
- [9]Ochsner UA, Koch AK, Fiechter A, Reiser J: Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 1994, 176(7):2044-2054.
- [10]Ochsner UA, Reiser J: Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1995, 92(14):6424-6428.
- [11]Fuqua C, Greenberg EP: Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol 1998, 1(2):183-189.
- [12]Medina G, Juarez K, Soberon-Chavez G: The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol 2003, 185(1):377-380.
- [13]Pesci EC, Pearson JP, Seed PC, Iglewski BH: Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997, 179(10):3127-3132.
- [14]Dekimpe V, Deziel E: Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 2009, 155(Pt 3):712-723.
- [15]Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberon-Chavez G: Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 2001, 40(3):708-718.
- [16]Aguirre-Ramirez M, Medina G, Gonzalez-Valdez A, Grosso-Becerra V, Soberon-Chavez G: The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor sigmaS. Microbiology 2012, 158(Pt 4):908-916.
- [17]Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A: Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. FEMS Microbiol Lett 2005, 253(1):125-131.
- [18]Bazire A, Diab F, Taupin L, Rodrigues S, Jebbar M, Dufour A: Effects of Osmotic Stress on Rhamnolipid Synthesis and Time-Course Production of Cell-To-Cell Signal Molecules by Pseudomonas aeruginosa. Open Microbiol J 2009, 3:128-135.
- [19]Wild M, Caro AD, Hernandez AL, Miller RM, Soberon-Chavez G: Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. FEMS Microbiol Lett 1997, 153(2):279-285.
- [20]Firoved AM, Boucher JC, Deretic V: Global genomic analysis of AlgU (sigma(E))-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 2002, 184(4):1057-1064.
- [21]Bazire A, Shioya K, Soum-Soutera E, Bouffartigues E, Ryder C, Guentas-Dombrowsky L, Hemery G, Linossier I, Chevalier S, Wozniak DJ, Lesouhaitier O, Dufour A: The sigma factor AlgU plays a key role in formation of robust biofilms by non-mucoid Pseudomonas aeruginosa. J Bacteriol 2010, 192(12):3001-3010.
- [22]Ramsey DM, Wozniak DJ: Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 2005, 56(2):309-322.
- [23]Wood LF, Ohman DE: Use of cell wall stress to characterize sigma 22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa. Mol Microbiol 2009, 72(1):183-201.
- [24]Heurlier K, Denervaud V, Pessi G, Reimmann C, Haas D: Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 2003, 185(7):2227-2235.
- [25]Brint JM, Ohman DE: Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 1995, 177(24):7155-7163.
- [26]Quenee L, Lamotte D, Polack B: Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in Pseudomonas aeruginosa. Biotechniques 2005, 38(1):63-67.
- [27]Bredenbruch F, Nimtz M, Wray V, Morr M, Muller R, Haussler S: Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines. J Bacteriol 2005, 187(11):3630-3635.
- [28]Aspedon A, Palmer K, Whiteley M: Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J Bacteriol 2006, 188(7):2721-2725.
- [29]Whiteley M, Greenberg EP: Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 2001, 183(19):5529-5534.
- [30]Schuster M, Urbanowski ML, Greenberg EP: Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A 2004, 101(45):15833-15839.
- [31]Holloway BW, Krishnapillai V, Morgan AF: Chromosomal genetics of Pseudomonas. Microbiol Rev 1979, 43(1):73-102.
- [32]Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166(1):175-176.
- [33]Marx CJ, Lidstrom ME: Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 2002, 33(5):1062-1067.
- [34]Bouffartigues E, Gicquel G, Bazire A, Bains M, Maillot O, Vieillard J, Feuilloley MG, Orange N, Hancock RE, Dufour A, Chevalier S: Transcription of the oprF gene of Pseudomonas aeruginosa is dependent mainly on the SigX sigma factor and is sucrose induced. J Bacteriol 2012, 194(16):4301-4311.
- [35]Corbella ME, Puyet A: Real-time reverse transcription-PCR analysis of expression of halobenzoate and salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa. Appl Environ Microbiol 2003, 69(4):2269-2275.
- [36]Smith AW, Iglewski BH: Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res 1989, 17(24):10509.
PDF