期刊论文详细信息
BMC Evolutionary Biology
Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha
Zhi-Hui Su1  Takashi Miyata4  Ryuichiro Machida2  Keisuke Ishiwata5  Go Sasaki3 
[1] Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan;Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386-2204, Japan;Present address: School of Medicine, Kumamoto University, Kumamoto 860-8556, Japan;JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569–1125, Japan;Present address: Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
关键词: DNA polymerase gene;    RNA polymerase gene;    Molecular phylogeny;    Entognatha;    Hexapoda;    Pancrustacea;   
Others  :  1085440
DOI  :  10.1186/1471-2148-13-236
 received in 2013-03-01, accepted in 2013-10-29,  发布年份 2013
PDF
【 摘 要 】

Background

Molecular phylogenetic analyses have revealed that Hexapoda and Crustacea form a common clade (the Pancrustacea), which is now widely accepted among zoologists; however, the origin of Hexapoda remains unresolved. The main problems are the unclear relationships among the basal hexapod lineages, Protura (proturans), Collembola (springtails), Diplura (diplurans), and Ectognatha (bristletails, silverfishes, and all winged insects). Mitogenomic analyses have challenged hexapod monophyly and suggested the reciprocal paraphyly of Hexapoda and Crustacea, whereas studies based on nuclear molecular data support the monophyletic origin of hexapods. Additionally, there are significant discrepancies with respect to these issues between the results of morphological and molecular studies. To investigate these problems, we performed phylogenetic analyses of Pancrustacea based on the protein sequences of three orthologous nuclear genes encoding the catalytic subunit of DNA polymerase delta and the largest and second largest subunits of RNA polymerase II from 64 species of arthropods, including representatives of all hexapod orders.

Results

Phylogenetic analyses were conducted based on the inferred amino acid (aa) sequences (~3400 aa in total) of the three genes using the maximum likelihood (ML) method and Bayesian inference. Analyses were also performed with additional datasets generated by excluding long-branch taxa or by using different outgroups. These analyses all yielded essentially the same results. All hexapods were clustered into a common clade, with Branchiopoda as its sister lineage, whereas Crustacea was paraphyletic. Within Hexapoda, the lineages Ectognatha, Palaeoptera, Neoptera, Polyneoptera, and Holometabola were each confirmed to be monophyletic with robust support, but monophyly was not supported for Entognatha (Protura + Collembola + Diplura), Ellipura (Protura + Collembola), or Nonoculata (Protura + Diplura). Instead, our results showed that Protura is the sister lineage to all other hexapods and that Diplura or Diplura + Collembola is closely related to Ectognatha.

Conclusion

This is the first study to include all hexapod orders in a phylogenetic analysis using multiple nuclear protein-coding genes to investigate the phylogeny of Hexapoda, with an emphasis on Entognatha. The results strongly support the monophyletic origin of hexapods but reject the monophyly of Entognatha, Ellipura, and Nonoculata. Our results provided the first molecular evidence in support of Protura as the sister group to other hexapods. These findings are expected to provide additional insights into the origin of hexapods and the processes involved in the adaptation of insects to life on land.

【 授权许可】

   
2013 Sasaki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113173236651.pdf 2021KB PDF download
Figure 3. 34KB Image download
Figure 2. 69KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Friedrich M, Tautz D: Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 1995, 376:165-167.
  • [2]García-Machado E, Pempera M, Dennebouy N, Oliva-Suarez M, Mounolou JC, Monnerot M: Mitochondrial genes collectively suggest the paraphyly of Crustacea with respect to Insecta. J Mol Evol 1999, 49:142-149.
  • [3]Shultz JW, Regier JC: Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean + hexapod clade. Proc R Soc Lond B 2000, 267:1011-1019.
  • [4]Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M: Hox genes and the phylogeny of the arthropods. Curr Biol 2001, 11:759-763.
  • [5]Giribet G, Edgecombe GD, Wheeler WC: Arthropod phylogeny based on eight molecular loci and morphology. Nature 2001, 413:157-161.
  • [6]Mallatt JM, Garey JR, Shultz JW: Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 2004, 31:178-191.
  • [7]Mallatt J, Giribet G: Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol 2006, 40:772-794.
  • [8]Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B: A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 2010, 27:2451-2464.
  • [9]Regier JC, Shultz JW, Kambic RE: Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc R Soc B 2005, 272:395-401.
  • [10]Regier JC, Shultz JW, Ganley AR, Hussey A, Shi D, Ball B, Zwich A, Stajich JE, Cummings MP, Martin J, Cunningham CW: Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Syst Biol 2008, 57:920-938.
  • [11]Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 2010, 463:1079-1083.
  • [12]Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ: A congruent solution to arthropod phylogeny: Phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc Lond B 2011, 278:298-306.
  • [13]von Reumont BM, Meusemann K, Szucsich NU, Dell'Ampio E, Gowri-Shankar V, Bartel D, Simon S, Letsch HO, Stocsits RR, Luan YX, Wägele JW, Pass G, Hadrys H, Bernhard Misof B: Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships. BMC Evol Biol 2009, 9:119.
  • [14]Boore JL, Lavrov DV, Brown WM: Gene translocation links insects and crustaceans. Nature 1998, 392:667-668.
  • [15]Dohle W: Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name 'Tetraconata’ for the monophyletic unit Crustacea + Hexapoda. Ann Soc Entomol Fr 2001, 37:85-103.
  • [16]Strausfeld NJ: Crustacean-insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain Behav Evol 1998, 52:186-206.
  • [17]Carapelli A, Nardi F, Dallai R, Frati F: A review of molecular data for the phylogeny of basal hexapods. Pedobiologia 2006, 50:191-204.
  • [18]Giribet G, Edgecombe GD: Reevaluating the arthropod tree of life. Annu Rev Entomol 2012, 57:167-186.
  • [19]Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK: Advances in insect phylogeny at the dawn of the Postgenomic Era. Annu Rev Entomol 2012, 57:449-468.
  • [20]Hennig W: Kritische Bemerkungen zum phylogenetischen System der Insekten. Beiträge zur Entomologie 1953, 3:1-85.
  • [21]Wheeler W, Whiting M, Wheeler Q, Carpenter J: The phylogeny of the extant hexapod orders. Cladistics 2001, 17:113-169.
  • [22]Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F: Hexapod origins: monophyletic or paraphyletic? Science 2003, 299:1887-1889.
  • [23]Carapelli A, Liò P, Nardi F, van der Wath E, Frati F: Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea. BMC Evol Biol 2007, 7(Suppl 2):S8. BioMed Central Full Text
  • [24]Cook CE, Yue Q, Akam M: Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proc R Soc B 2005, 272:1295-1304.
  • [25]Cameron SL, Miller KB, D’Haese CA, Whiting MF, Barker SC: Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics 2004, 20:534-557.
  • [26]Hassanin A: Phylogeny of Arthropoda inferred from mitochondrial sequences: Strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 2006, 38:100-116.
  • [27]Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore JL, Telford MJ, Pisani D, Blaxter M, Lavrov DV: Ecdysozoan mitogenomics: Evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol 2010, 2:425-440.
  • [28]Giribet G, Edgecombe GD, Carpenter J, D’Haese C, Wheeler WC: Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects. Org Divers Evol 2004, 4:319-340.
  • [29]Kjer KM: Aligned 18S and insect phylogeny. Syst Biol 2004, 53:506-514.
  • [30]Luan Y-X, Mallatt JM, Xie R-D, Yang Y-M, Yin W-Y: The phylogenetic positions of three basal-hexapod groups (Protura, Diplura, and Collembola) based on ribosomal RNA gene sequences. Mol Biol Evol 2005, 22:1579-1592.
  • [31]Timmermans MJTN, Roelofs D, Mariën J, van Straalen NM: Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers. BMC Evol Biol 2008, 8:83. BioMed Central Full Text
  • [32]Kukalova-Peck J: New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground plan, and the role of thoracic side lobes in the origin of wings (Insecta). Can J Zool 1987, 65:2327-2345.
  • [33]Machida R, Ikeda Y, Tojo K: Evolutionary changes in developmental potentials of the embryo proper and embryonic membranes in Hexapoda: a synthesis revised. Proc Arthropod Embryol Soc Jpn 2002, 37:1-11.
  • [34]Machida R: Evidence from embryology for reconstructing the relationships of hexapod basal clades. Arthropod Syst Phylogeny 2006, 64:95-104.
  • [35]Beutel RG, Gorb SN: A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthropod Syst Phylogeny 2006, 64:3-25.
  • [36]Regier JC, Shultz JW, Kambic RE: Phylogeny of basal hexapod lineages and estimates of divergence times. Ann Entomol Soc Am 2004, 97:411-419.
  • [37]Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A: Towards an 18S phylogeny of hexapods: Accounting for group-specific character covariance in optimized mixed nucleotide/doublet models. Zoology 2007, 110:409-429.
  • [38]Kjer KM, Carle FL, Litman J, Ware J: A molecular phylogeny of Hexapoda. Arthropod Syst Phylogeny 2006, 64:35-44.
  • [39]Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su Z-H: Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol 2011, 58:169-180.
  • [40]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33:511-518.
  • [41]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
  • [42]Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007, 56:564-577.
  • [43]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2000, 28:2731-2739.
  • [44]Bergsten J: A review of long-branch attraction. Cladistics 2005, 21:163-193.
  • [45]Ertas B, von Reumont BM, Wagele J-W, Misof B, Burmester T: Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol Biol Evol 2009, 26:2711-2718.
  • [46]Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK: Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Mol Biol Evol 2013, 30:215-233.
  • [47]von Reumont BM, Jenner RA, Wills MA, Dell’Ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B: Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 2012, 29:1031-1045.
  • [48]Grimaldi DA: 400 million years on six legs: On the origin and early evolution of Hexapoda. Arthropod Struct Dev 2010, 39:191-203.
  • [49]Hennig W: Insect phylogeny. New York: John Wiley & Sons; 1981.
  • [50]Kristensen NP: Forty years’ insect phylogenetic systematics: Hennig’s “Kritische Bemerkungeny” and subsequent developments. Zool Beitr 1995, 36:83-124.
  • [51]Kraus O: Phylogenetic relationships between higher taxa of tracheate arthropods. In Arthropod Relationships. Edited by Fortey RA, Thomas RH. London: Chapman & Hall; 1998:295-303.
  • [52]Gao Y, Bu Y, Luan YX: Phylogenetic relationships of basal hexapods reconstructed from nearly complete 18S and 28S rRNA gene sequences. Zool Sci 2008, 25:1139-1145.
  • [53]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [54]Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27:1164-1165.
  • [55]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [56]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  文献评价指标  
  下载次数:21次 浏览次数:2次